Metal Foam Production Process Using Hydro-Gel and its Improvement

2007 ◽  
Vol 539-543 ◽  
pp. 1845-1850 ◽  
Author(s):  
Toru Shimizu ◽  
Kunio Matsuzaki

Already, we are developing the process to produce stainless steel foam over 97% porosity using hydro-gel binder. However, this process is very sensitive process, and foaming condition is affected by the slight deference of heating temperature. Therefore, we tried to improve the process by changing the foaming agent and foaming conditions. By the improvement of the process, the foaming operation becomes stable and finer cell size stainless steel foam can be obtained.

2007 ◽  
Vol 534-536 ◽  
pp. 997-1000 ◽  
Author(s):  
Toru Shimizu ◽  
Kotaro Hanada ◽  
Satoru Adachi ◽  
Masahito Katoh ◽  
Kanichi Hatsukano ◽  
...  

Stainless steel sludge is generated as a waste in the grinding process, and the possibility of recycling stainless steel is considered here. Generally, stainless steel grinding sludge ranging about 10,000 are generated per a year in Japan, and most of it is discarded or re-melted with scrap steel. In this study, we considered the possibility of using the stainless steel sludge as metal powder for MIM or raw material for metal foam. For the MIM process, the metal powder will need some improvement, and flotation and spheroidizing processes of the sludge are necessary. For fabrication of the metal foam, untreated sludge can be used, and steel foam about 90% porosity is produced.


2021 ◽  
Author(s):  
Selcan Karakuş ◽  
İnci Albayrak ◽  
Nuray Beköz Üllen ◽  
Mert Akin Insel ◽  
Ayben Kilislioğlu

2002 ◽  
Vol 43 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Takashi Nakamura ◽  
Svyatoslav V. Gnyloskurenko ◽  
Kazuhiro Sakamoto ◽  
Aleksandra V. Byakova ◽  
Ryoichi Ishikawa
Keyword(s):  

2014 ◽  
Vol 1035 ◽  
pp. 219-224 ◽  
Author(s):  
Hui Wang ◽  
Xiang Yang Zhou ◽  
Bo Long

316L stainless steel foams (SSFs) are fabricated successfully by polymeric sponge impregnation technology. The effects of mass fractions of PVA and powder on LOAD in impregnated sponge samples are investigated, and the effects of sintering temperature on apparent density, open porosity and bending strength of SSFs samples are also discussed. The experimental results show that the impregnated sponge samples may hold excellent 3D open-cell network structure and uniform muscles when the mass fractions of PVA and powder in slurry are kept in 9-13 % and 52-75% respectively; with rising the sintering temperature, the apparent density and bending strength of SSFs gradually increases, the open porosity reduces. After the temperature exceeds 1260°C, the bending strength reduces oppositely. A stainless steel foam sample with open porosity of 81.4% and bending strength of about 56.8 Mpa can be obtained after sintering at 1260 °Cfor 30min.


2015 ◽  
Vol 1087 ◽  
pp. 232-235
Author(s):  
Fazimah Mat Noor ◽  
N.I. Mad Rosip ◽  
Khairur Rijal Jamaludin ◽  
Sufizar Ahmad

Foam replication method is capable of producing foams with a highly porous structure with adjustable pore dimension, shape and size. In this work, this method has been used to prepare stainless steel 316L foam and sintered at 1200°C, 1250°C and 1300°C in a vacuum furnace. The microstructure and elemental analysis of the sample were examined using scanning electron microscope (SEM) and Energy Dispersive X–Ray (EDX), while the mechanical properties of the samples was determined by using compression test. It was found that the average pore size was in the range of 330µm-350µm. The yield strength and elastic modulus are in the range of 58-66 GPa and 0.46-0.50GPa respectively.


2010 ◽  
Vol 297-301 ◽  
pp. 875-880 ◽  
Author(s):  
Kung Jeng Ma ◽  
His Hsin Chien ◽  
S. Prabhakar Vattikuti ◽  
Chien Huang Kuo ◽  
Cheng Bang Huo ◽  
...  

There are growing varieties of glasses available on the market for the manufacture of molded optical lenses. A glass with a low transition temperature (Tg) has the advantage of extending the service life of molding dies. However, most of the low Tg glasses have a high content of alkali metal oxides and tend to induce severe glass sticking problems. This has made the molding process of these kinds of glasses very difficult indeed. The low Tg glasses normally demonstrate poor chemical durability and scratch resistance. As a result, the yields of fabricating the glass-preforms are frequently rather low. This research tried depositing a very thin layer of aluminum oxide on various glass-preforms by a water based sol-gel process. A high temperature glass wetting experiment was carried out to investigate the high temperature interfacial reaction between the coated glass gobs and stainless steel substrate. It was found that when the uncoated glass-preforms were brought into contact with stainless steel, the contact angle decreased with increasing heating temperature and duration. Owing to the severe interfacial chemical reaction, the originally transparent glass gradually turned translucent. In the case of Al2O3 coated glass-preforms, the variation of the contact angles was very limited, which presented no sticking and no wetting behavior. No reaction products could be detected on the contact area after the wetting test. The optical transmission of those lenses molded from the coated glass-preforms exhibited no or very little changes after the molding process.


Sign in / Sign up

Export Citation Format

Share Document