Dynamic Mechanical Thermal Properties of a New Metal/Polymer Composite for Fused Deposition Modelling Process

2007 ◽  
Vol 561-565 ◽  
pp. 795-798 ◽  
Author(s):  
W.Q. Song ◽  
Syed H. Masood

This paper introduces an entirely new metal based composite material for direct rapid tooling application using Fused Deposition Modelling rapid prototyping system with desired mechanical and thermal properties and characteristics. The paper specifically describes the results of the dynamic mechanical thermal analysis (DMTA) of this new metal/polymer composite material, consisting of iron particles in nylon type matrix, for use in FDM process and with the aim of application to direct rapid tooling for injection moulding. The work represents a major development in the direction of direct rapid tooling for reducing the cost and time in tooling manufacture for injection moulding.

MRS Advances ◽  
2020 ◽  
Vol 5 (10) ◽  
pp. 459-467
Author(s):  
Takashi Itoh ◽  
Takumi Nakano

ABSTRACTFused deposition modelling (FDM) type of 3D printing is widely used for manufacturing complex shaped polymer products. Recently, the metal/polymer composite products can be made by 3D printer using metal/polymer composite filament. Now, we are planning to develop a new manufacturing process of the thermoelectric (TE) elements or modules by combining the FDM-type 3D printing and the degreasing-sintering process. In this work, we focused on the degreasing-sintering process of the mixture of Mg2Si and polylactic acid (PLA) powders. Mg2Si compound powder was synthesized by a liquid-solid phase reaction (LSPR) method. The powder mixtures of Mg2Si, Al and PLA were pressed and heated in a pulse discharge sintering (PDS) chamber under a vacuum in various degreasing conditions. Following the degreasing, the sintering of Mg2Si was carried out in the same PDS chamber at various starting sintering temperatures. Sintered density, Seebeck coefficient and electrical resistivity of the consolidated Mg2Si were measured and the power factor as a TE performance was estimated from the TE properties. The optimum conditions of degreasing-sintering process maximizing the sintered density and the TE performance of Al-doped Mg2Si were investigated. Furthermore, the influences of the additive amount of Al on the sintered density and the TE performance of Mg2Si fabricated via the optimized degreasing-sintering process were investigated.


2016 ◽  
Vol 9 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Bolin Huang ◽  
S.H. Masood ◽  
Mostafa Nikzad ◽  
Prabhu Raja Venugopal ◽  
Adhiyamaan Arivazhagan

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 295 ◽  
Author(s):  
Wojciech Wałach ◽  
Natalia Oleszko-Torbus ◽  
Alicja Utrata-Wesołek ◽  
Marcelina Bochenek ◽  
Ewa Kijeńska-Gawrońska ◽  
...  

Poly(2-oxazoline) (POx) matrices in the form of non-woven fibrous mats and three-dimensional moulds were obtained by electrospinning and fused deposition modelling (FDM), respectively. To obtain these materials, poly(2-isopropyl-2-oxazoline) (PiPrOx) and gradient copolymers of 2-isopropyl- with 2-n-propyl-2-oxazoline (P(iPrOx-nPrOx)), with relatively low molar masses and low dispersity values, were processed. The conditions for the electrospinning of POx were optimised for both water and the organic solvent. Also, the FDM conditions for the fabrication of POx multi-layer moulds of cylindrical or cubical shape were optimised. The properties of the POx after electrospinning and extrusion from melt were determined. The molar mass of all (co)poly(2-oxazoline)s did not change after electrospinning. Also, FDM did not influence the molar masses of the (co)polymers; however, the long processing of the material caused degradation and an increase in molar mass dispersity. The thermal properties changed significantly after processing of POx what was monitored by increase in enthalpy of exo- and endothermic peaks in differential scanning calorimetry (DSC) curve. The influence of the processing conditions on the structure and properties of the final material were evaluated having in a mind their potential application as scaffolds.


Sign in / Sign up

Export Citation Format

Share Document