Microstructure Evolution during Continuous Frictional Angular Extrusion of Interstitial-Free Steel

2008 ◽  
Vol 584-586 ◽  
pp. 631-636 ◽  
Author(s):  
Bo Yan ◽  
Shane Dover ◽  
Lan Jin ◽  
J. Shen ◽  
Yan Huang ◽  
...  

Interstitial-free steel sheets have been processed using a novel severe plastic deformation technique - continuous frictional angular extrusion (CFAE), in order to produce ultrafine grained structures. The deformation was carried out at room temperature and individual sheet specimens were repeatedly processed to various passes. An overall grain size of 200nm was achieved after 8 passes (or an equivalent total strain of 5.3). The present paper reports the evolution of microstructures during deformation, which were examined and characterized using electron backscatter imaging and high resolution EBSD in a field emission gun SEM. The mechanisms of grain refinement are discussed.

2017 ◽  
Vol 23 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Gyu-Jin Oh ◽  
Kye-Man Lee ◽  
Moo-Young Huh ◽  
Jin Eon Park ◽  
Soo Ho Park ◽  
...  

2010 ◽  
Vol 89-91 ◽  
pp. 244-249 ◽  
Author(s):  
Sujoy S. Hazra ◽  
Azdiar A. Gazder ◽  
Elena V. Pereloma

The evolution of stored energy and associated thermal behaviour was investigated for an ultrafine grained Ti-IF steel severely deformed by Equal Channel Angular Pressing (ECAP) followed by cold rolling at ambient and liquid nitrogen temperatures. Bulk stored energy measurements by Differential Scanning Calorimetry (DSC) returned 350-600 whereas local stored energy estimates from microhardness, Electron Back-Scattering Diffraction (EBSD) and X-ray line profile analysis resulted in 5-140 . Higher bulk stored energy values correspond to the enthalpy release from all sources of strain in the material volume as well as Ti precipitation during annealing while the lower local stored energy range alludes only to dislocation content or internal stresses. An apparent activation energy of 500-550 suggests sluggish recrystallisation due to excess of Ti in solid solution.


2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
S. Farè ◽  
N. Lecis ◽  
M. Vedani

A study was carried out on aging behaviour of a 6082 alloy processed by two different severe plastic deformation techniques: ECAP and asymmetric rolling. Both techniques were able to generate an ultrafine-grained structure in samples processed at room temperature. It was stated that severe straining promotes marked changes in the postdeformation aging kinetics. The peaks of β′′/β′ transition phases were anticipated and of progressively reduced intensity over the coarse grained alloy. A further peak accounting for onset of recrystallization also appeared in the most severely deformed samples. Full consistency in peak shape and position was found when comparing materials processed by ECAP and asymmetric rolling. Isothermal aging treatments performed at 180°C revealed that in the severely deformed samples, aging became so fast that the hardness curves continuously decreased due to overwhelming effects of structure restoration. On the contrary, aging at 130°C offers good opportunities for fully exploiting the precipitate hardening effects in the ultrafine-grained alloy.


Sign in / Sign up

Export Citation Format

Share Document