scholarly journals Fibrous Reinforcing System to Increase the Shear Resistance of High Strength Concrete

2008 ◽  
Vol 587-588 ◽  
pp. 887-891
Author(s):  
Simão Santos ◽  
Joaquim Barros ◽  
Lúcio Lourenço

The available research has evidenced that discrete steel fibers can increase significantly the shear resistance of High Strength Concrete (HSC) structural elements when High Strength Fiber Reinforced Concrete (HSFRC) is designed in such way that fiber reinforcing mechanisms are optimized. In general, the increase of the concrete compressive strength is associated to an increase of its compactness, resulting benefits in terms of durability, but a strong concern emerges related to the integrity of this material, since it fails in a too brittle mode when submitted to high temperatures. To contribute for the knowledge about the benefits provided by discrete steel fibers when added to HSC applied to laminar structures, an experimental program composed of slab strips submitted to shear loading configuration was carried out. Uniaxial compression tests with cylinders of 150 mm diameter and 300 mm height, and bending tests with 600×150×150 mm3 beams were executed to assess the compression and bending behavior of the developed HSFRC. To evaluate the influence of the percentage of fibers in the shear resistance of laminar structures, three point loading tests with slab strips of 800×170×150 mm3 dimensions were performed. Taking the obtained experimental results, the applicability of the formulation proposed by RILEM TC 162-TDF was evaluated. Test results showed that, even with relative low dosages of steel fibers, the increment in shear resistance was significantly increased. The main obtained results in the research program are presented and discussed in this paper.

2013 ◽  
Vol 575-576 ◽  
pp. 239-244 ◽  
Author(s):  
Togay Ozbakkloglu

This paper presents the partial results of an experimental program undertaken to investigate the behavior of square and rectangular ultra-high-strength concrete (UHSC)-filled fiber reinforced polymer (FRP) tubes (UHSCFFTs) under axial compression. The effects of the amount of confinement, cross-sectional aspect ratio and corner radius were investigated experimentally through the tests of 24 concrete-filled FRP tubes (CFFTs) that were manufactured using unidirectional carbon fiber sheets and UHSC with 108 MPa average compressive strength. Test results indicate that sufficiently confined square and rectangular UHSCFFTs can exhibit highly ductile behavior. The results also indicate that HSCFFTs having tubes of low confinement effectiveness may experience a significant strength loss at the point of transition on their stress-strain curves. Examination of the test results have led to a number of important observations on the influence of corner radius and sectional aspect ratio, which are presented and discussed in the paper.


2011 ◽  
Vol 250-253 ◽  
pp. 532-535
Author(s):  
Jun Su ◽  
Jun Lin Tao ◽  
Tang Li ◽  
Yan Yin

The compression tests were carried out to investigate the compression behavior of steel fiber reinforced ultra high strength concrete(SFRUHSC). Cubic and axial compression specimens were tested at room tempreture, in terms of load control. The result shouwed that the compression strength of 150×150×150mm3and 100×100×100mm3 cubic specimens is 108.4MPa and 94.7MPa, while the 100×100×300mm3 axial specimens’ is 73.4MPa. The above data demonstrated that the different size effect from that of strength of steel fiber reinforced concrete(SFRC), namely the strength of 100×100×100mm is larger than that of 150×150×150mm3. Two kinds of compression specimens showed various fracture mode: ductile tension fracture of cubic specimens and the brittle shearing fracture of axial ones. But the steel fibers inside the specimens had been pulled out from the matrix.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
In-Hwan Yang ◽  
Changbin Joh ◽  
Kyoung-Chul Kim

The flexural responses of high-strength fiber-reinforced concrete (HSFRC) beams and high-strength concrete (HSC) beams are compared in this study. A series of HSFRC and HSC beams were tested under pure flexural loading. The effects of the type of concrete, compressive strength of the concrete, and tensile rebar ratio on the flexural behavior of the concrete beams were investigated. The flexural behavior of the HSFRC and HSC beams including the induced crack and failure patterns, load and deflection capacity, crack stiffness, ductility index, and flexural toughness was compared. The crack stiffness of the HSC and HSFRC beams increased with the rebar ratio. For the same rebar ratios, the crack stiffness of the HSFRC beams was much greater than that of the HSC beams. The ductility index of the HSC beams decreased sharply with an increase in the rebar ratio, but the ductility index of the HSFRC beams did not show a clear decrease with increasing rebar ratio. The flexural toughness of the HSFRC beams was greater than that of the HSC beams at higher rebar ratios of 1.47% and 1.97%, indicating that the energy absorption of the HSFRC beams was greater than that of the HSC beams. Test results also indicated that HSFRC developed better and more consistent ductility with higher rebar ratio. In addition, the tested bending strength and sectional analysis results were compared.


1987 ◽  
Vol 114 ◽  
Author(s):  
Methi Wecluat ◽  
Schboon Chimamphant

ABSTRACTIn recent years, the means of making high strength concrete are simple by adding microsilica, fly ash, or other types of additives. As the use of high strength concrete increases, the need to clearly understand its prcperties is essentially a necessity for engineering design. While much of the basic properties of high strength concrete such as compressive strength (fc), modulus of elasticity (Ec), and modulus of rupture (fr), etc., has been investigated and reported recently, many remain unavailable. This paper presents the bond strength characteristics of deformed bar, steel fibers, and normal aggregate in high strength concrete matrix. The compressive strength of concrete used in this study is 75–80 MPa (11,000-12,000 psi). Bond slip relationships of deformed bars of three different bar diameters were obtained from the pull-cut test. Two types of steel fiber reinforced high strength cemented composites were tested in a directtension, tapered specimen to observe the pulled-out behavior of steel fibers. Fiber reinforced concretes with fiber volume fraction of 0.5, 1.0, 1.5, and 2.0 % were compared to the unreinforced matrix. A direct-tension, dog boned specimen was used to study the bond between aggregate-matrix interface. The results from this study indicate that high strength concrete is generally more brittle, and in essence, allows less microcracking, less slippage, and less pulled-out deformation. This general trend is observed in both the deformed bar and fiber pulled-out as well as in aggregate-matrix interfacial debonding. The maximum slip of deformed bars in high strength concrete is about 0.15 mm.(0.006 in.) which is only one-tenth of that reported for normal concrete as 1.5 to 2.0 mm.(0.06–0.08 in.). A normalized pull-out stress-displacement relationship of high strength fiber reinforced concrete exhibits a unique behavior similar to those reported for normal fiber reinforced matrix.


2020 ◽  
Vol 10 (2) ◽  
pp. 642 ◽  
Author(s):  
Luís Bernardo ◽  
Sérgio Lopes ◽  
Mafalda Teixeira

This article describes an experimental program developed to study the influence of longitudinal prestress on the behaviour of high-strength concrete hollow beams under pure torsion. The pre-cracking, the post-cracking and the ultimate behaviour are analysed. Three tests were carried out on large hollow high-strength concrete beams with similar concrete strength. The variable studied was the level of longitudinal uniform prestress. Some important conclusions on different aspects of the beams’ behaviour are presented. These conclusions, considered important for the design of box bridges, include the influence of the level of prestress in the cracking and ultimate behaviour.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Zeng ◽  
Zhenkun Cui ◽  
Yunfeng Xiao ◽  
Siqian Jin ◽  
Yuanyuan Wu

This paper presents an application of high strength concrete to concrete-encased composite frame building based on an experimental program. The work emphasized joints behavior under reverse cyclic loading caused by earthquakes to provide information for seismic design. To investigate the internal mechanisms and seismic performance, cyclic loading tests were carried out on five half-scale interior joints. Two design variables were addressed in the research: concrete strength and axial column load. Frame joints performance including crack pattern, failure mode, deformation, ductility, strain distribution, and energy dissipation capacity was investigated. It was found that all joint specimens behaved in a manner with joint panel shear failure. Using high strength concrete increased the joint strength and had relatively little effect on the stiffness and ductility. The axial column load helped the joint strength by better mobilizing the outer part of the joint, but it had an obvious influence on the ductility and energy-dissipating capacity, which can be improved by providing enough transverse reinforcement. A typical crack pattern was also provided which can well reflect mechanical character and damage process. This research should contribute to the future engineering applications of high strength concrete to concrete-encased composite structure.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Iakov Iskhakov ◽  
Yuri Ribakov

As known, high-strength compressed concrete elements have brittle behavior, and elastic-plastic deformations do not appear practically up to their ultimate limit state (ULS). This problem is solved in modern practice by adding fibers that allow development of nonlinear deformations in such elements. As a rule, are applied steel fibers that proved high efficiency and contribute ductile behavior of compressed high-strength concrete (HSC) elements as well as the desired effect at long-term loading (for other types of fibers, the second problem is still not enough investigated). However, accurate prediction of the ULS for abovementioned compression elements is still very important and current. With this aim, it is proposed to use transverse deformations in HSC to analyze compression elements' behavior at stages close to ultimate. It is shown that, until the appearance of nonlinear transverse deformations (cracks formation), these deformations are about 5-6 times lower than the longitudinal ones. When cracks appear, the tensile stress-strain relationship in the transverse direction becomes nonlinear. This fact enables to predict that the longitudinal deformations approach the ultimate value. Laboratory tests were carried out on 21 cylindrical HSC specimens with various steel fibers content (0, 20, 30, 40, and 60 kg/m3). As a result, dependences of transverse deformations on longitudinal ones were obtained. These dependences previously proposed by the authors’ concept of the structural phenomenon allow proper estimation of the compressed HSC state up to failure. Good agreement between experimental and theoretical results forms a basis for further development of modern steel fibered HSC theory and first of all nonlinear behavior of HSC.


Sign in / Sign up

Export Citation Format

Share Document