Measures of Ductility for UFG Materials Obtained by SPD

2009 ◽  
Vol 633-634 ◽  
pp. 223-230 ◽  
Author(s):  
Yan Beygelzimer ◽  
O. Prokof'eva ◽  
R. Kulagin ◽  
Viktor Varyukhin ◽  
Sergey Synkov

It is shown that for ultrafine grained materials obtained with severe plastic deformation methods, the value of elongation up to fracture does not determine ductility, while the reduction of area up to fracture does determine it. The latter characteristic gives information about how an alloy structure resists the formation of discontinuity flaws under deformation in a hard stress state. We show that for a commercial grade titanium that underwent Twist Extrusion (TE), the value of , and thus ductility, is higher in the UFG state than in the coarse-grained state.

2007 ◽  
Vol 124-126 ◽  
pp. 1325-1328
Author(s):  
Dong Hyuk Shin ◽  
Duck Young Hwang ◽  
Jung Yong Ahn ◽  
Kyung Tae Park ◽  
Yong Suk Kim ◽  
...  

Ultrafine grained materials fabricated by severe plastic deformation exhibit both superior and inferior mechanical properties, as the prominent structural materials, compared to coarse grained counterparts. The superior mechanical properties are ultrahigh strength and exceptional ductility at high temperatures (i.e., superplasticity). The inferior mechanical properties are lack of strain hardenability and room temperature ductility. In this study, the relationship between microstructure and mechanical properties of ultrafine grained materials fabricated by severe plastic deformation is investigated in order to provide insight broadening their future applicability.


2015 ◽  
Vol 60 (2) ◽  
pp. 605-614 ◽  
Author(s):  
T. Kvačkaj ◽  
A. Kováčová ◽  
J. Bidulská ◽  
R. Bidulský ◽  
R. Kočičko

AbstractIn this study, static, dynamic and tribological properties of ultrafine-grained (UFG) oxygen-free high thermal conductivity (OFHC) copper were investigated in detail. In order to evaluate the mechanical behaviour at different strain rates, OFHC copper was tested using two devices resulting in static and dynamic regimes. Moreover, the copper was subjected to two different processing methods, which made possible to study the influence of structure. The study of strain rate and microstructure was focused on progress in the mechanical properties after tensile tests. It was found that the strain rate is an important parameter affecting mechanical properties of copper. The ultimate tensile strength increased with the strain rate increasing and this effect was more visible at high strain rates$({\dot \varepsilon} \sim 10^2 \;{\rm{s}}^{ - 1} )$. However, the reduction of area had a different progress depending on microstructural features of materials (coarse-grained vs. ultrafine-grained structure) and introduced strain rate conditions during plastic deformation (static vs. dynamic regime). The wear behaviour of copper was investigated through pin-on-disk tests. The wear tracks examination showed that the delamination and the mild oxidational wears are the main wear mechanisms.


2006 ◽  
Vol 114 ◽  
pp. 7-18 ◽  
Author(s):  
Ruslan Valiev

During the last decade severe plastic deformation (SPD) has become a widely known method of materials processing used for fabrication of ultrafine-grained materials with attractive properties. Nowadays SPD processing is rapidly developing and is on the verge of a transition from lab-scale research to commercial production. This paper focuses on several new trends in the development of SPD techniques for effective grain refinement, including those for commercial alloys and presents new SPD processing routes to produce bulk nanocrystalline materials.


2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
S. Farè ◽  
N. Lecis ◽  
M. Vedani

A study was carried out on aging behaviour of a 6082 alloy processed by two different severe plastic deformation techniques: ECAP and asymmetric rolling. Both techniques were able to generate an ultrafine-grained structure in samples processed at room temperature. It was stated that severe straining promotes marked changes in the postdeformation aging kinetics. The peaks of β′′/β′ transition phases were anticipated and of progressively reduced intensity over the coarse grained alloy. A further peak accounting for onset of recrystallization also appeared in the most severely deformed samples. Full consistency in peak shape and position was found when comparing materials processed by ECAP and asymmetric rolling. Isothermal aging treatments performed at 180°C revealed that in the severely deformed samples, aging became so fast that the hardness curves continuously decreased due to overwhelming effects of structure restoration. On the contrary, aging at 130°C offers good opportunities for fully exploiting the precipitate hardening effects in the ultrafine-grained alloy.


Author(s):  
Mihaela Banu ◽  
Mitica Afteni ◽  
Alexandru Epureanu ◽  
Valentin Tabacaru

There are several severe plastic deformation processes that transform the material from microsized grains to the nanosized grains under large deformations. The grain size of a macrostructure is generally 300 μm. Following severe plastic deformation it can be reached a grain size of 200 nm and even less up to 50 nm. These structures are called ultrafine grained materials with nanostructured organization of the grains. There are severe plastic deformation processes like equal angular channel, high pressure torsion which lead to a 200 nm grain size, respectively 100 nm grain size. Basically, these processes have a common point namely to act on the original sized material so that an extreme deformation to be produced. The severe plastic deformation processes developed until now are empirically-based and the modeling of them requires more understanding of how the materials deform. The macrostructural material models do not fit the behavior of the nanostructured materials exhibiting simultaneously high strength and ductility. The existent material laws need developments which consider multi-scale analysis. In this context, the present paper presents a laboratory method to obtain ultrafine grains of an aluminum alloy (Al-Mg) that allows the microstructure observations and furthermore the identification of the stress–strain response under loadings. The work is divided into (i) processing of the ultrafine-grained aluminum alloy using a laboratory-scale process named in-plane controlled multidirectional shearing process, (ii) crystallographic analysis of the obtained material structure, (iii) tensile testing of the ultrafine-grained aluminum specimens for obtaining the true stress-strain behavior. Thus, the microscale phenomena are explained with respect to the external loads applied to the aluminum alloy. The proposed multi-scale analysis gives an accurate prediction of the mechanical behavior of the ultrafine-grained materials that can be further applied to finite element modeling of the microforming processes.


2011 ◽  
Vol 264-265 ◽  
pp. 183-187 ◽  
Author(s):  
S. Ranjbar Bahadori ◽  
Seyed Ali Asghar Akbari Mousavi ◽  
A.R. Shahab

Interest in processing of bulk ultrafine-grained materials has grown significantly over the last years. Severe plastic deformation processes such as twist extrusion have been the essence of these researches and used to decrease the bulk grain size. The bulk gain size can reduce if twist extrusion process combines with a conventional forming technique. In this study, the effects of reduction by employing the rolling process after the twist extrusion method were considered. The twist extrusion process of the commercially pure aluminum sample was carried out using a twisted die with 60º die angle, and the samples were processed through rolling subsequently. As a result of rolling, average microstructure grain size decreased significantly and the hardness amount increased accordingly


2007 ◽  
Vol 7 (11) ◽  
pp. 3765-3770 ◽  
Author(s):  
Nobuhiro Tsuji

Recently, it becomes possible to fabricate bulk metals having ultrafine grained or nanocrystalline structures of which grain size is in nano-meter dimensions. One of the promising ways to realize bulk nanostructured metals is severe plastic deformation (SPD) above logarithmic equivalent strain of 4. We have developed an original SPD process, named Accumulative Roll Bonding (ARB) using rolling deformation in principle, and have succeeded in fabricating bulk nanostructured sheets of various kinds of metals and alloys. The ARB process and the nanostructured metals fabricated by the ARB are introduced in this paper. The nanostructured metals sometimes perform quite unique mechanical properties, that is rather surprising compared with conventionally coarse grained materials. The unique properties seem to be attributed to the characteristic structures of the nano-metals full of grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document