scholarly journals Simulation of an Improved Microactuator with Discrete MSM Elements

2009 ◽  
Vol 635 ◽  
pp. 181-186 ◽  
Author(s):  
Berta Spasova ◽  
Hans Heinrich Gatzen

Magnetic Shape Memory (MSM) alloys are a new class of “smart” materials. In the martensite state, they exhibit a reversible strain due to a reorientation of twin variants, based on twin boundary motion driven by an external magnetic field occurring in the martensite state. This effect allows for the development of linear microactuators. This work presents the simulation results for the fabrication of a microactuator based on an MSM alloy with an optimized design. A stator element consists of a NiFe45/55 flux guide, two poles, and double-layer Cu coils wound around each pole for generating the magnetic field. The MSM material applied is NiMnGa. The integrated microactuator is subjected to dynamic simulation, using a “checkerboard” pattern to locally switch the magnetic properties when the relative permeability µr is changed. The model is described with the Ansys Parametric Design Language (APDL). Design, modeling, and simulation of the magnetic system including MSM material, are conducted by Finite Element Method (FEM) analysis using the software tool ANSYS™.

2011 ◽  
Vol 684 ◽  
pp. 177-201 ◽  
Author(s):  
Markus Chmielus ◽  
Peter Müllner

We study the effect of surface modifications and constraints on the mechanical properties of Ni-Mn- Ga single crystals, which are imposed by (i) structural modifications near the surface, (ii) mounting to a solid surface, and (iii) guiding the stroke. Spark eroded samples were electropolished and characterized before and after each polishing treatment. Surface damage was then produced with spark erosion and abrasive wearing. Surface damage stabilizes and pins a dense twin-microstructure and prevents twins from coarsening. The density of twins increases with increasing degree of surface deformation. Twinning stress and hardening rate during mechanical loading increase with increasing surface damage and twin density. In contrast, when a damaged surface layer is removed, twinning stresses, hardening rate, and twin density decrease. Constraining the sample by mounting and guiding reduces the magnetic-field-induced strain by locking twins at the constrained surfaces. . For single-domain crystals and for hard magnetic shape-memory alloys, external constraints strongly reduce the magnetic-field-induced strain and the fatigue lifetime is short. In contrast, for selfaccommodated martensite and for soft magnetic shape-memory alloys, the twin-microstructure adapts well to external constraints and the fatigue lifetime is long. The performance of devices with MSMA transducers requires managing stress distributions through design and control of surface properties, microstructure, and constraints.


2008 ◽  
Vol 59 ◽  
pp. 1-10 ◽  
Author(s):  
Outi Söderberg ◽  
Ilkka Aaltio ◽  
Yan Ling Ge ◽  
Xu Wen Liu ◽  
Simo Pekka Hannula

In the shape memory alloys (SMAs) the thermal triggering induces reversible dimensional change by the phase transformation – these materials may also be ferrior ferromagnetic, however, here only the ferromagnetic SMAs are discussed. In certain SMAs the austenitemartensite phase transformation is influenced by the magnetic field as either austenite or martensite is promoted by the field and this is exploited for the dimensional changes. However, in the magnetic shape memory (MSM) alloys no phase transformation occurs as the remarkable dimensional changes take place by the twin variant changes in the martensitic phase activated by the external magnetic field at constant temperature. In addition to the phase transformation or magnetic shape memory effect, the applied magnetic field may also result in the conventional magnetostriction (MS), enhance the superelasticity (magneticfieldassisted superelasticity MFAS) or induce the giant magnetocaloric effect (GMCE). Certain alloys such as NiMnGa may even be multifunctional showing more than one of these effects. The present paper gives an overview of the different types of the magnetically activated SMA alloys, their properties as well as their potentials for applications in the frameworks of the recent studies.


2010 ◽  
Vol 108 (4) ◽  
pp. 043914 ◽  
Author(s):  
Thorsten Krenke ◽  
Seda Aksoy ◽  
Eyüp Duman ◽  
Mehmet Acet ◽  
Xavier Moya ◽  
...  

2016 ◽  
Vol 699 ◽  
pp. 31-36 ◽  
Author(s):  
Eduard Chirila ◽  
Ionel Chirica ◽  
Doina Boazu ◽  
Elena Felicia Beznea

The paper addresses the study of the damping characteristics estimation and behaviour of the magnetorheological elastomers (MREs) in the absence of magnetic field. This type of material actively changes the size, internal structure and viscoelastic characteristics under the external influences. These particular composite materials whose characteristics can vary in the presence of a magnetic fields are known as smart materials. The feature which causes the variation of properties in magnetic fields is explained by the existence of polarized particles which change the material form by energy absorbing. Damping is a special characteristic that influences the vibratory of the mechanical system. As an effect of this property is the reducing of the vibration amplitudes by dissipating the energy stored during the vibratory moving. The main characteristic that is based on the determination of the damping coefficient is the energy loss, which is the subject of the present paper. Before to start the characteristics determination in the presence of the magnetic field, it is necessary to study these characteristics in the absence of magnetic field. The MRE specimens have been manufactured and tested under the light conditions (non magnetic field). A special experimental test rig was built to investigate the response of the MRE specimens under the charging force. The experimental results show that the loss energy of the MRE specimen can be determined from the charging-discharging curves versus displacement. The results of the MRE specimen are presented in this paper: MRE with feromagnetic particles not exposed in magnetic field during fabrication.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 81 ◽  
Author(s):  
Christian Titsch ◽  
Qiang Li ◽  
Simon Kimme ◽  
Welf-Guntram Drossel

Magnetostrictive materials are a group of smart materials with comparable properties to piezoelectric materials regarding strain and operating frequency. In contrast, the Curie temperature is much higher and the principle effect allows different actuator designs. Especially in the case of rotating actuators in ultrasonic assisted machining, a high potential is seen for a simplified energy transmission. In the study, a test stand for a rotating actuator with simultaneous vibration in longitudinal direction was designed to show the proof of principle for this idea. It was shown that the current inducing the magnetic field as well as its frequency influence the amplitude of the rotating actuator. This is a first step to developing a rotating actuator for ultrasonic machining.


2018 ◽  
Vol 29 (10) ◽  
pp. 2051-2095 ◽  
Author(s):  
Raju Ahamed ◽  
Seung-Bok Choi ◽  
Md Meftahul Ferdaus

Smart materials are kinds of designed materials whose properties are controllable with the application of external stimuli such as the magnetic field, electric field, stress, and heat. Smart materials whose rheological properties are controlled by externally applied magnetic field are known as magneto-rheological materials. Magneto-rheological materials actively used for engineering applications include fluids, foams, grease, elastomers, and plastomers. In the last two decades, magneto-rheological materials have gained great attention of researchers significantly because of their salient controllable properties and potential applications to various fields such as automotive industry, civil environment, and military sector. This article offers a recent progressive review on the magneto-rheological materials technology, especially focusing on numerous application devices and systems utilizing magneto-rheological materials. Conceivable limitations, challenges, and comparable advantages of applying these magneto-rheological materials in various sectors are analyzed critically, which provides a clear pathway to the researchers in selecting and utilizing these materials. The review starts with an introduction to the elementary description of magneto-rheological materials and their significant contribution in various fields. Following this, different types of the magneto-rheological materials, modeling of the magneto-rheological materials, magneto-rheological material–based devices, and their applications have been extensively reviewed to promote practical use of magneto-rheological materials in a wide spectrum of the application from the automobile to medical device.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1534
Author(s):  
Lian Huang ◽  
Daoyong Cong ◽  
Mingguang Wang ◽  
Yandong Wang

A comprehensive study of the crystal structure and phase transition as a function of temperature and composition in Ni57−xMn21+xGa22 (x = 0, 2, 4, 5.5, 7, 8) (at. %) magnetic shape memory alloys was performed by a temperature-dependent synchrotron X-ray diffraction technique and transmission electron microscopy. A phase diagram of this Ni57−xMn21+xGa22 alloy system was constructed. The transition between coexisting multiple martensites with monoclinic and tetragonal structures during cooling was observed in the Ni51.5Mn26.5Ga22 (x = 5.5) alloy, and it was found that 5M + 7M multiple martensites coexist from 300 K to 160 K and that 5M + 7M + NM multiple martensites coexist between 150 K and 100 K. The magnetic-field-induced transformation from 7M martensite to NM martensite at 140 K where 5M + 7M + NM multiple martensites coexist before applying the magnetic field was observed by in situ neutron diffraction experiments. The present study is instructive for understanding the phase transition between coexisting multiple martensites under external fields and may shed light on the design of novel functional properties based on such phase transitions.


2016 ◽  
Vol 879 ◽  
pp. 133-138 ◽  
Author(s):  
Ilkka Aaltio ◽  
Frans Nilsén ◽  
Joonas Lehtonen ◽  
Yan Ling Ge ◽  
Steven Spoljaric ◽  
...  

Martensitic Ni-Mn-Ga based alloys are known for the Magnetic Shape Memory (MSM) effect, which upon application of an external magnetic field can generate a strain up to 12 % depending on the microstructure of the martensite. The MSM effect occurs by rearrangement of the martensite variants, which is most advantageous in single crystals. Single crystals are, however, rather tedious to produce and there has been attempts to achieve MSM effect in polycrystals. However, in polycrystals the magnetic field induced shape change remains low as compared to single crystals. As an alternative to the former, hybrid MSM materials offer several advantages. When compared to single crystals, hybrids have extended freedom of shaping, lower raw material price, relatively large MSM strain and easier manufacturability. Embedding MSM particles into a suitable polymer matrix results in actuation function or good vibration damping performance. In the present study we report on the mechanical, structural and magnetic properties of MSM polymer hybrids, which are prepared by mixing gas-atomized Ni-Mn-Ga MSM powder into epoxy matrix and aligning the magnetic particles in a magnetic field.


Sign in / Sign up

Export Citation Format

Share Document