scholarly journals Proof of Principle of a Rotating Actuator Based on Magnetostrictive Material with Simultaneous Vibration Amplitude

Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 81 ◽  
Author(s):  
Christian Titsch ◽  
Qiang Li ◽  
Simon Kimme ◽  
Welf-Guntram Drossel

Magnetostrictive materials are a group of smart materials with comparable properties to piezoelectric materials regarding strain and operating frequency. In contrast, the Curie temperature is much higher and the principle effect allows different actuator designs. Especially in the case of rotating actuators in ultrasonic assisted machining, a high potential is seen for a simplified energy transmission. In the study, a test stand for a rotating actuator with simultaneous vibration in longitudinal direction was designed to show the proof of principle for this idea. It was shown that the current inducing the magnetic field as well as its frequency influence the amplitude of the rotating actuator. This is a first step to developing a rotating actuator for ultrasonic machining.

2016 ◽  
Vol 699 ◽  
pp. 31-36 ◽  
Author(s):  
Eduard Chirila ◽  
Ionel Chirica ◽  
Doina Boazu ◽  
Elena Felicia Beznea

The paper addresses the study of the damping characteristics estimation and behaviour of the magnetorheological elastomers (MREs) in the absence of magnetic field. This type of material actively changes the size, internal structure and viscoelastic characteristics under the external influences. These particular composite materials whose characteristics can vary in the presence of a magnetic fields are known as smart materials. The feature which causes the variation of properties in magnetic fields is explained by the existence of polarized particles which change the material form by energy absorbing. Damping is a special characteristic that influences the vibratory of the mechanical system. As an effect of this property is the reducing of the vibration amplitudes by dissipating the energy stored during the vibratory moving. The main characteristic that is based on the determination of the damping coefficient is the energy loss, which is the subject of the present paper. Before to start the characteristics determination in the presence of the magnetic field, it is necessary to study these characteristics in the absence of magnetic field. The MRE specimens have been manufactured and tested under the light conditions (non magnetic field). A special experimental test rig was built to investigate the response of the MRE specimens under the charging force. The experimental results show that the loss energy of the MRE specimen can be determined from the charging-discharging curves versus displacement. The results of the MRE specimen are presented in this paper: MRE with feromagnetic particles not exposed in magnetic field during fabrication.


Author(s):  
Parsaoran Hutapea

The ultimate goal of our research is to develop a bone transport device using a magnetostrictive alloy actuation system. The device is designed to be subcutaneously mounted on the periosteal surface of the tibia. The magnetomechanical behavior of Terfenol-D smart magnetostrictive material has been well investigated in the literature when a magnetic field is applied along the longitudinal direction of the Terfenol-D material (perpendicular to the material’s magnetic moment). However, the requirement of our device is to have the magnetic field transversely applied on the Terfenol-D material (along the material’s magnetic moment). Therefore, the objective of this work was to study the magnetomechanical behavior of Terfenol-D under a transversely applied magnetic field. Experimental work was performed and a Terfenol-D material constitutive behavior was investigated.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 421
Author(s):  
Wei He ◽  
Aichao Yang

This paper presents a shear-mode piezoelectric current sensing device for two-wire power cords in electric power grids. The piezoelectric heterostructure consists of a cymbal structure and a permalloy plate. The cymbal structure is constructed from a permanent magnet, a brass cap, and shear-mode piezoelectric materials. The permalloy plate concentrates the magnetic field generated by the two-wire power cord on the magnet. Under the force amplification effect of the cymbal structure, the response of the device is improved. A prototype has been fabricated to conduct the experiments. The experimental average sensitivity of the device is 12.74 mV/A in the current range of 1–10 A with a separating distance of d = 0 mm, and the resolution reaches 0.04 A. The accuracy is calculated to be ±0.0177 mV at 1.5 A according to the experimental voltage distribution. The current-to-voltage results demonstrate that the proposed heterostructure can also be used as a magnetoelectric device without bias.


1973 ◽  
Vol 57 (3) ◽  
pp. 529-544 ◽  
Author(s):  
F. H. Busse

The nonlinear hydromagnetic dynamo problem is investigated for the case of convection in a layer of an electrically conducting fluid heated from below. It is shown that two-dimensional convection rolls in conjunction with a longitudinal mean flow are capable of amplifying a magnetic field in the form of a wave propagating in the longitudinal direction. The action of the Lorentz forces causes a reduction of the amplitude of convection with the consequence that the energy of the magnetic field cannot grow beyond an equilibrium value which is determined as a function of the parameters of the problem. The analysis is based on an expansion in powers of the longitudinal wavenumber β of the magnetic field and applies in the case of large values of the magnetic Prandtl number.


2018 ◽  
Vol 29 (10) ◽  
pp. 2051-2095 ◽  
Author(s):  
Raju Ahamed ◽  
Seung-Bok Choi ◽  
Md Meftahul Ferdaus

Smart materials are kinds of designed materials whose properties are controllable with the application of external stimuli such as the magnetic field, electric field, stress, and heat. Smart materials whose rheological properties are controlled by externally applied magnetic field are known as magneto-rheological materials. Magneto-rheological materials actively used for engineering applications include fluids, foams, grease, elastomers, and plastomers. In the last two decades, magneto-rheological materials have gained great attention of researchers significantly because of their salient controllable properties and potential applications to various fields such as automotive industry, civil environment, and military sector. This article offers a recent progressive review on the magneto-rheological materials technology, especially focusing on numerous application devices and systems utilizing magneto-rheological materials. Conceivable limitations, challenges, and comparable advantages of applying these magneto-rheological materials in various sectors are analyzed critically, which provides a clear pathway to the researchers in selecting and utilizing these materials. The review starts with an introduction to the elementary description of magneto-rheological materials and their significant contribution in various fields. Following this, different types of the magneto-rheological materials, modeling of the magneto-rheological materials, magneto-rheological material–based devices, and their applications have been extensively reviewed to promote practical use of magneto-rheological materials in a wide spectrum of the application from the automobile to medical device.


2008 ◽  
Vol 2 (4) ◽  
Author(s):  
Yuehao Luo ◽  
Parsaoran Hutapea

The ultimate goal of our research is to develop a bone transport device using a magnetostrictive alloy actuation system. The device is designed to be subcutaneously mounted on the periosteal surface of the tibia. The magnetomechanical behavior of Terfenol-D smart magnetostrictive material has been well investigated in the literature when a magnetic field is applied along the longitudinal direction of the Terfenol-D material (perpendicular to the material’s magnetic moment). However, the requirement of our device is to have the magnetic field transversely applied on the Terfenol-D material (along the material’s magnetic moment). Therefore, the objective of this work was to study the magnetomechanical behavior of Terfenol-D under a transversely applied magnetic field. Experimental work was performed and a Terfenol-D material constitutive behavior was investigated.


Author(s):  
Yarden B. Weber ◽  
Daniel Schweitzer ◽  
Hedva Bar ◽  
Doron Shilo

One major application for smart materials is measuring stresses or strains in load bearing structures. The ability to monitor structural health, and observe real time stress levels in load bearing platforms is a field of great interest. In this work, we develop and characterize a method for stress monitoring adhesively bonded joints by incorporating a magnetostrictive filler into the polymeric matrix. Magnetostrictive materials create a change in their surrounding magnetic field when subjected to strain, and thus serve as natural strain sensors, that require neither power supply nor any kind of wiring. A clear correlation between the stress and the magnetic field, which is measured at a distance of 20–60 mm from the specimen, is observed under both shear and compression loads. Moreover, there is a significant stress region in which the relationship between the stress and the magnetic field is approximately linear. This behavior demonstrates the possibility of monitoring the average stress in a specimen by a single magnetic sensor mounted at a distance from the specimen. Additionally, complete three dimensional mapping of the magnetic field around loaded specimens reveals that the specimen magnetization is not uniform and implies the existence of a correlation between the specimen magnetization and the stress field which was numerically computed. This behavior indicates the potential of mapping the local stress profile within a specimen by using an array of several magnetic sensors. The effects of magnetostrictive particle size and of applying a magnetic field during specimen polymerization are also discussed.


Author(s):  
Rangaraj Madhavrao Desai ◽  
Subash Acharya ◽  
Mohibb-e-Hussain Jamadar ◽  
Hemantha Kumar ◽  
Sharnappa Joladarashi ◽  
...  

The change in rheological properties of smart materials like magnetorheological fluid when brought under the influence of a magnetic field can be utilized to develop magnetorheological devices where the output has to be continuously and quickly varied using electronic control interface. In the present study, magnetorheological fluid is synthesized and used as a smart fluid in a twin-tube magnetorheological damper operating in valve mode. The behavior of the magnetorheological fluid is experimentally characterized in a rheometer and mathematically modeled using Herschel–Bulkley model. The parameters of the Herschel–Bulkley model are expressed as polynomial functions of strength of the magnetic field in order to find the shear stress developed by the magnetorheological fluid at any given strength of the magnetic field applied. The magnetorheological damper, which was designed for application in a passenger van, is tested in the damper testing machine. The performance of the damper at different damper velocities and current supplied is studied. The range of values for the parameters of the experimental testing are chosen to emulate the actual conditions of operation in its intended application. Nondimensional analysis is performed, which links magnetorheological fluid rheological properties and geometrical parameters of magnetorheological damper design with the force developed by the damper. Finite element method magnetics is used to find the strength of the magnetic field at the fluid flow gap. Analytical methods are used to calculate the damper force developed due to the field-dependent yield stress and compared with experimental force values. The resulting dynamic range of the magnetorheological damper is also assessed.


2009 ◽  
Vol 635 ◽  
pp. 181-186 ◽  
Author(s):  
Berta Spasova ◽  
Hans Heinrich Gatzen

Magnetic Shape Memory (MSM) alloys are a new class of “smart” materials. In the martensite state, they exhibit a reversible strain due to a reorientation of twin variants, based on twin boundary motion driven by an external magnetic field occurring in the martensite state. This effect allows for the development of linear microactuators. This work presents the simulation results for the fabrication of a microactuator based on an MSM alloy with an optimized design. A stator element consists of a NiFe45/55 flux guide, two poles, and double-layer Cu coils wound around each pole for generating the magnetic field. The MSM material applied is NiMnGa. The integrated microactuator is subjected to dynamic simulation, using a “checkerboard” pattern to locally switch the magnetic properties when the relative permeability µr is changed. The model is described with the Ansys Parametric Design Language (APDL). Design, modeling, and simulation of the magnetic system including MSM material, are conducted by Finite Element Method (FEM) analysis using the software tool ANSYS™.


Sign in / Sign up

Export Citation Format

Share Document