Texture and Microstructure of Invar® Deformed by Asymmetrical Rolling

2010 ◽  
Vol 636-637 ◽  
pp. 538-543 ◽  
Author(s):  
Denis Solas ◽  
Sorphal Chhann ◽  
Thierry Baudin ◽  
Richard Penelle

Asymmetrical rolling, in which the circumferential velocities of the working rolls are different, is a method to impose shear deformation in addition to the thickness reduction. As a consequence, the deformation texture can be modified as compared to the classical rolling. In this work, the asymmetrical rolling of invar (Fe-36%Ni) and the influence of the deformation route are studied. The Invar® alloy has been deformed by asymmetrical rolling with a 83% thickness reduction. The texture of the deformed alloy was measured by X-ray diffraction at different levels through the thickness: upper side- middle- down side. With asymmetrical rolling, the deformed texture is a copper type texture but the components were rotated about 5-7° around the Transverse Direction (TD) axis as compared to the ideal position of these components in the pole figure representation. The rotation of the pole figure is an indicator of the amount of shear really introduced in the material during asymmetrical rolling. Finally, a simple model was developed in order to establish the condition to obtain either shear texture or grain refinement.

2007 ◽  
Vol 550 ◽  
pp. 551-556 ◽  
Author(s):  
Sorphal Chhann ◽  
Denis Solas ◽  
Anne Laure Etter ◽  
Richard Penelle ◽  
Thierry Baudin

Asymmetrical rolling, in which the circumferential velocities of the working rolls are different, is a method to impose shear deformation and in turn shear deformation texture to sheet through the thickness. The Invar® alloy has been deformed by asymmetrical rolling with a 84% thickness reduction. The texture of the deformed and annealed alloy was measured by X-ray diffraction at different levels through the thickness: upper side- middle- down side, with unidirectional rolling. The deformed texture is a copper type texture but the components were rotated about 5-7° around the Transverse Direction (TD) axis as compared to the ideal position of these components in the pole figure representation. During recrystallization, the rolling components (brass {011}<112>,copper {112}<111>, aluminum {123}<634>) decrease quickly whereas the cube component {001}<100> is preferentially developed after a short annealing time. However, the rolling components do not disappear completely after complete recrystallization (120 minutes annealing). As a consequence the final texture contains a high cube component and rolling components.


1999 ◽  
Vol 55 (5) ◽  
pp. 726-735 ◽  
Author(s):  
N. Ishizawa ◽  
Y. Matsushima ◽  
M. Hayashi ◽  
M. Ueki

The fluorite-related cubic structure of yttria-stabilized zirconia, Zr0.75 8Y0.24 2O1.87 9, has been studied by single-crystal X-ray diffraction using synchrotron radiation and by EXAFS. Two diffraction data sets obtained at X-ray energies of 512 and 10 eV below the Y K edge revealed that in the average structure Zr atoms are displaced from the origin of the space group Fm3¯m along 〈111〉 by 0.19 Å, while Y atoms reside at the origin. Approximately 48% of the O atoms occupy the ideal position in the fluorite-type structure, while 43% of O atoms are displaced from the ideal position along 〈001〉 by 0.31 Å. The remaining 9% of O atoms are presumably sited at interstitial positions. Local structures around Zr and Y are investigated by combining the results of single-crystal X-ray diffraction and EXAFS studies.


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo &gt; 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2004 ◽  
Vol 37 (6) ◽  
pp. 901-910 ◽  
Author(s):  
C. Seitz ◽  
M. Weisser ◽  
M. Gomm ◽  
R. Hock ◽  
A. Magerl

A triple-axis diffractometer for high-energy X-ray diffraction is described. A 450 kV/4.5 kW stationary tungsten X-ray tube serves as the X-ray source. Normally, 220 reflections of thermally annealed Czochralski Si are employed for the monochromator and analyser. Their integrated reflectivity is about ten times higher than the ideal crystal value. With the same material as the sample, and working with the WKα line at 60 keV in symmetric Laue geometry for all axes, the full width at half-maximum (FWHM) values for the longitudinal and transversal resolution are 2.5 × 10−3and 1.1 × 10−4for ΔQ/Q, respectively, and the peak intensity for a non-dispersive setting is 3000 counts s−1. In particular, for a double-axis mode, an energy well above 100 keV from theBremsstrahlungspectrum can be used readily. High-energy X-rays are distinguished by a high penetration power and materials of several centimetre thickness can be analysed. The feasibility of performing experiments with massive sample environments is demonstrated.


Author(s):  
P. Bayliss ◽  
N. C. Stephenson

SummaryThe crystal structure of gersdorffite (III) has been examined with three-dimensional Weissenberg X-ray diffraction data. The unit cell is isometric with a 5·6849 ± 0·0003 Å, space group PI, and four formula units per cell. This structure has the sulphur and arsenic atoms equally distributed over the non-metal atom sites of pyrite. All atoms show significant random displacements from the ideal pyrite positions to produce triclinic symmetry, which serves to distinguish this mineral from a disordered cubic gersdorffite (II) and a partially ordered cubic gersdorffite (I). Factors responsible for the atomic distortions are discussed.


2017 ◽  
Vol 81 (2) ◽  
pp. 369-381 ◽  
Author(s):  
F. Cámara ◽  
E. Sokolova ◽  
Y. A. Abdu ◽  
F. C. Hawthorne ◽  
T. Charrier ◽  
...  

AbstractFogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, is a new mineral from the Lagoa do Fogo, São Miguel Island, the Azores. It occurs in cavities as highly elongated (on [001]) prisms, up to 2000 μm long and 50 μm× 50 μm in cross-section, associated with sanidine, astrophyllite, fluornatropyrochlore, ferrokentbrooksite, quartz and ferro-katophorite. Crystals are generally transparent and colourless, with vitreous lustre, occasionally creamy white. Fogoite-(Y) has a white streak, splintery fracture and very good {100} cleavage. Mohs hardness is ∼5. Dcalc. = 3.523 g/cm3. It is biaxial (+) with refractive indices (λ = 590 nm) α = 1.686(2), β = 1.690(2), γ = 1.702(5); 2Vmeas. = 57(1)° and 2Vcalc. = 60°. It is nonpleochroic. Fogoite-(Y) is triclinic, space group P1, a = 9.575(6), b = 5.685(4), c = 7.279(5) Å, α = 89.985(6), β = 100.933(4), γ = 101.300(5)°, V = 381.2 (7) Å3. The six strongest reflections in the powder X-ray diffraction data [d (Å), I, (hkl)] are: 2.954, 100, (1̄1̄2, 3̄10); 3.069, 42, (300, 01̄2); 2.486, 24, (310, 21̄2); 3.960, 23, (1̄1̄1, 2̄10); 2.626, 21, (2̄20); 1.820, 20, (1̄04). Electron microprobe analysis gave the following empirical formula calculated on 18 (O + F) (Na2.74Mn0.15)∑2.89Ca2[Y1.21(La0.01Ce0.03Nd0.03Sm0.02Gd0.08Dy0.08Er0.05Yb0.04Lu0.01)∑0.35Mn0.16Zr0.11Na0.09Fe0.072+Ca0.01]∑2(Ti0.76Nb0.23Ta0.01)∑1(Si4.03O14)O1.12F2.88, Z = 1. The crystal structure was refined on a twinnedcrystal to R1 = 2.81% on the basis of 2157 unique reflections (Fo > 4σFo) and is a framework of TS (Titanium Silicate) blocks, which consist of HOH sheets (H – heteropolyhedral, O – octahedral) parallel to (100). In the O sheet, the the [6]MO(1) site is occupied mainly by Ti, <MO(1)–ϕ> = 1.980 Å, and the [6]MO(2) and [6]MO(3) sites are occupied by Na and Na plus minor Mn, <MO(2)–ϕ>= 2.490 Å and <MO(3)–ϕ> = 2.378 Å. In the H sheet, the two [4]Si sites are occupied by Si, with <Si–O> = 1.623 Å; the [6]MH site is occupied by Y and rare-earth elements (Y > REE), with minor Mn, Zr, Na, Fe2+ and Ca, <MH–ϕ> = 2.271 Å and the [6]AP site is occupied by Ca, <AP–ϕ> = 2.416 Å. The MH and AP octahedra and Si2O7 groups constitute the H sheet. The ideal compositions of the O and two H sheets are Na3Ti(OF)F2 and Y2Ca2(Si2O7)2 apfu. Fogoite-(Y) is isostructural with götzenite and hainite. The mineral is named after the type locality, the Fogo volcano in the Azores.


1998 ◽  
Vol 54 (6) ◽  
pp. 722-731 ◽  
Author(s):  
F. Reinauer ◽  
R. Glaum

The crystal structure of pentatitanium tetraoxide tetrakis(phosphate), Ti5O4(PO4)4, has been determined and refined from X-ray diffraction single-crystal data [P212121 (No. 19), Z = 4, a = 12.8417 (12), b = 14.4195 (13), c = 7.4622 (9) Å (from Guinier photographs); conventional residual R 1 = 0.042 for 2556 Fo > 4σ(Fo ), R 1 = 0.057 for all 3276 independent reflections; 282 parameters; 29 atoms in the asymmetric unit of the ideal structure]. The structure is closely related to those of β-Fe2O(PO4)-type phosphates and synthetic lipscombite, Fe3(PO4)4(OH). While these consist of infinite chains of face-sharing MO6 octahedra, in pentatitanium tetraoxide tetrakis(phosphate) only five-eighths of the octahedral voids are occupied according to □3Ti5O4(PO4)4. Four of the five independent Ti4+O6 show high radial distortion [1.72 ≤ d(Ti−O) ≤ 2.39 Å] and a typical 1 + 4 + 1 distance distribution. The fifth Ti4+O6 is an almost regular octahedron [1.91 ≤ d(Ti−O) ≤ 1.98 Å]. Partial disorder of Ti4+ over the available octahedral voids is revealed by the X-ray structure refinement. High-resolution transmission electron microscopy (HRTEM) investigations confirm this result.


1971 ◽  
Vol 15 ◽  
pp. 114-122 ◽  
Author(s):  
Annin Segmüller

An IBM 1800 time-sharing system is used in our X-ray laboratory to control a four-circle diffractometer for structure research, several powder diffractometers, a pole-figure goniometer and a microdensitometer along with other instruments outside the diffraction area. A survey of the computer system is given and the hardware necessary to automate the diffractometers is discussed. The computer supervision ranges from simple data-logging with a minimum of control to complete control of all actions depending on the diffractometer and the requirements of the experiment. Also described is the use of the computer to process the data and to perform background jobs.


Sign in / Sign up

Export Citation Format

Share Document