Friction Stir Welding of Magnesium Alloys under Different Process Parameters

2010 ◽  
Vol 638-642 ◽  
pp. 3954-3959 ◽  
Author(s):  
Carlo Bruni ◽  
Gianluca Buffa ◽  
Livan Fratini ◽  
M. Simoncini

Experimental and numerical investigations have been performed in order to study the effect of welding parameters on properties of FSW-ed AZ31 magnesium alloy sheets. The results, presented in terms of tensile strength and numerical field variables distributions, allow to understand the behaviour of such material when FSW-ed using different rotational and welding speeds for a given tool geometry.

2020 ◽  
Vol 14 (1) ◽  
pp. 6259-6271
Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanish Paramaguru ◽  
Mokhtar Awang ◽  
Hamed Mohebbi ◽  
Sharma V Korada

Underwater Friction Stir Welding (UFSW) is a solid-state joining technique which uses a non-consumable tool to weld metals. The objective of this investigation is to evaluate the mechanical properties of the AA5052 Aluminium alloy joints prepared by UFSW. The effect of different type of welding tools and welding parameters on the weld joint properties are studied. Square, tapered cylindrical and taper threaded cylindrical type of welding tools have been used to produce the joints with the tool rotational speed varying from 500 rpm to 2000 rpm while the welding speed varying from 50 mm/min to 150 mm/min. Tensile strength, micro-hardness distribution, fracture features, micro-and macrostructure of the fabricated weld joints have been evaluated. The effect of welding process parameters that influences the mechanical properties and fracture characterization of the joints are explained in detail. A maximum Ultimate Tensile Strength (UTS) value of 222.07 MPa is attained with a gauge elongation of 14.78%. Microstructural evaluation revealed that most of the fracture are found on the thermal mechanically affected zone (TMAZ)adjacent to the weld nugget zone (WNZ) due to bigger grain sizes. It is found that most of the joints exhibit ductile characteristics in failure. Fractography analysis has been used to find the behavior of weld joints in failure.


2019 ◽  
Vol 7 (1) ◽  
pp. 17-23
Author(s):  
Azzam Sabah Albunduqee ◽  
Hussein R Al-Bugharbee

Friction Stir Welding is one of the technologies of joining solid states, which still attracts the researchers’ interest.  In welded joints the mechanical properties are affected by a number of mechanical properties of the joined materials and by the process parameters as well. In the present study, the effect of a number of friction stir welding parameters on the tensile strength of the welded joint have been investigated using the Taguchi method and the analysis of variance (ANOVA). The study considers different levels of friction stir welding variables; namely, different rotational speeds of (2000, 1600, 1250 rpm), different welding speeds (12.5, 16, 20 mm / min), and different welding tilt angles (0, 1, 2 degrees).  The optimum process parameters and their contribution rate were selected based on the Taguchi method for test design and by using the Minitab 16 program. In this study, the best results (i.e, higher tensile strength) were obtained at a rotational velocity of 1600 rpm, linear velocity of 16 mm / min, and welding angle, 1o. The highest tensile strength was obtained under these conditions.                                                                                       


2014 ◽  
Vol 622-623 ◽  
pp. 540-547 ◽  
Author(s):  
Massimo Callegari ◽  
Archimede Forcellese ◽  
Matteo Palpacelli ◽  
Michela Simoncini

Robotic friction stir welding experiments were performed on AA5754 aluminium alloy sheets, 2.5 mm in thickness, in two different temper states (H111 and O-annealed). A six axes robot with a hybrid structure, characterised by an arm with parallel kinematics and a roll-pitch-roll wrist with serial kinematics, was used. The effect of the process parameters on the macro-and micro-mechanical properties and microstructure of joints was widely analysed. It was shown that, under the same process condition, the mechanical properties of the joints are strongly influenced by the initial temper state of the alloy. In particular, as AA5754-H111 is welded, the ultimate tensile strength is not significantly affected by the process parameters whilst the ultimate elongation significantly depends on the welding speed. In AA5754-O, both ultimate values of tensile strength and elongation are affected by the welding speed whilst a negligible effect of the rotational speed can be observed. Irrespective of the welding parameters, the H111 temper state leads to mechanical properties higher than those given by the O-annealed state. An investigation has been also carried out in order to evaluate the micro-hardness profiles and microstructure of the FSWed joints in order to understand the mechanisms operating during robotic friction stir welding.


2009 ◽  
Vol 410-411 ◽  
pp. 555-562 ◽  
Author(s):  
Carlo Bruni ◽  
Gianluca Buffa ◽  
L. d’Apolito ◽  
Archimede Forcellese ◽  
Livan Fratini

Friction Stir Welding (FSW) has been arousing a continuously increasing interest among joining processes since its invention in 1991. Although mainly used for aluminum alloys, it can also be applied to other light alloys. In the present work, experimental and numerical campaigns have been performed with the aim to study the effect of the tool geometry on the mechanical properties of FSW-ed AZ31 magnesium alloy sheets. The results, presented in terms of tensile strength, ductility, micro-hardness values and numerical field variables distributions, allow to reach a deeper knowledge on the behaviour of such relatively new material when FSW-ed, and can be used for a full optimization of the joints.


Author(s):  
Ashish M. Desai ◽  
Bharat C. Khatri ◽  
Vivek Patel ◽  
Harikrishna Rana

Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2010 ◽  
Vol 160 ◽  
pp. 313-318 ◽  
Author(s):  
Uceu Suhuddin ◽  
Sergey Mironov ◽  
H. Takahashi ◽  
Yutaka S. Sato ◽  
Hiroyuki Kokawa ◽  
...  

The “stop-action” technique was employed to study grain structure evolution during friction-stir welding of AZ31 magnesium alloy. The grain structure formation was found to be mainly governed by the combination of the continuous and discontinuous recrystallization but also involved geometric effect of strain and local grain boundary migration. Orientation measurements showed that the deformation mode was very close to the simple shear associated with the rotating pin and material flow arose mainly from basal slip.


Sign in / Sign up

Export Citation Format

Share Document