Development of a Low Cost Process for Manufacturing of Ti-MMC by Roll-Diffusion-Bonding

2010 ◽  
Vol 638-642 ◽  
pp. 991-996 ◽  
Author(s):  
Claudio Testani ◽  
F. Ferraro

Titanium-alloy matrix composites (TMC) are nowadays one of the material class with the highest specific resistance from room temperature up to 800° C. Centro Sviluppo Materiali SpA (CSM) efforts have been focused on the developing of an innovative solution to reduce the process costs. The new approach consists in an experimental “diffusion bonding” plant for co-rolling at high temperature sheets of titanium alloy and silicon carbide monofilaments fabrics. The result is a process cost reduction of about 40% respect to HIP process. The experimental pilot plant has been proposed for patent with n° 2006A000261 on may 2006. This paper describes the pilot plant and the process results. The metallographic examination on products shows full bonded samples (100 mm wide and 1500 mm long) obtained in a work field that is at least 100 times faster than that of HIP. High temperature tensile tests have been carried on Roll Diffusion Bonded specimens and the results are reported in comparison with those obtained by Isostatic Pressing (HIP) and Thermal- Spraying (TS) processes on the same composite.

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3358 ◽  
Author(s):  
Hang Chen ◽  
Guangbao Mi ◽  
Peijie Li ◽  
Xu Huang ◽  
Chunxiao Cao

In this study, graphene-oxide (GO)-reinforced Ti–Al–Sn–Zr–Mo–Nb–Si high-temperature titanium-alloy-matrix composites were fabricated by powder metallurgy. The mixed powders with well-dispersed GO sheets were obtained by temperature-controlled solution mixing, in which GO sheets adsorb on the surface of titanium alloy particles. Vacuum deoxygenating was applied to remove the oxygen-containing groups in GO, in order to reduce the introduction of oxygen. The compact composites with refined equiaxed and lamellar α phase structures were prepared by hot isostatic pressing (HIP). The results show that in-situ TiC layers form on the surface of GO and GO promotes the precipitation of hexagonal (TiZr)6Si3 particles. The composites exhibit significant improvement in strength and microhardness. The room-temperature tensile strength, yield strength and microhardness of the composite added with 0.3 wt% GO are 9%, 15% and 27% higher than the matrix titanium alloy without GO, respectively, and the tensile strength and yield strength at 600 °C are 3% and 21% higher than the matrix alloy. The quantitative analysis indicates that the main strengthening mechanisms are load transfer strengthening, grain refinement and (TiZr)6Si3 second phase strengthening, which accounted for 48%, 30% and 16% of the improvement of room-temperature yield strength, respectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
De-feng Mo ◽  
Ting-feng Song ◽  
Yong-jian Fang ◽  
Xiao-song Jiang ◽  
Charles Q. Luo ◽  
...  

High-quality joints between titanium alloys and stainless steels have found applications for nuclear, petrochemical, cryogenic, and aerospace industries due to their relatively low cost, lightweight, high corrosion resistance, and appreciable mechanical properties. This article reviews diffusion bonding between titanium alloys and stainless steels with or without interlayers. For diffusion bonding of a titanium alloy and a stainless steel without an interlayer, the optimized temperature is in the range of 800–950°C for a period of 60–120 min. Sound joint can be obtained, but brittle FeTi and Fe-Cr-Ti phases are formed at the interface. The development process of a joint mainly includes three steps: matching surface closure, growth of brittle intermetallic compounds, and formation of the Kirkendall voids. Growth kinetics of interfacial phases needs further clarification in terms of growth velocity of the reacting layer, moving speed of the phase interface, and the order for a new phase appears. The influence of Cu, Ni (or nickel alloy), and Ag interlayers on the microstructures and mechanical properties of the joints is systematically summarized. The content of FeTi and Fe-Cr-Ti phases at the interface can be declined significantly by the addition of an interlayer. Application of multi-interlayer well prevents the formation of intermetallic phases by forming solid solution at the interface, and parameters can be predicted by using a parabolic diffusion law. The selection of multi-interlayer was done based on two principles: no formation of brittle intermetallic phases and transitional physical properties between titanium alloy and stainless steel.


1993 ◽  
Vol 12 (11) ◽  
pp. 865-868 ◽  
Author(s):  
S. G. Warrier ◽  
C. A. Blue ◽  
R. Y. Lin

Materia Japan ◽  
1995 ◽  
Vol 34 (5) ◽  
pp. 611-613 ◽  
Author(s):  
Takashi Saito ◽  
Tadahiko Furuta ◽  
Hiroyuki Takamiya ◽  
Toshiya Yamaguchi

Sign in / Sign up

Export Citation Format

Share Document