scholarly journals A Review on Diffusion Bonding between Titanium Alloys and Stainless Steels

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
De-feng Mo ◽  
Ting-feng Song ◽  
Yong-jian Fang ◽  
Xiao-song Jiang ◽  
Charles Q. Luo ◽  
...  

High-quality joints between titanium alloys and stainless steels have found applications for nuclear, petrochemical, cryogenic, and aerospace industries due to their relatively low cost, lightweight, high corrosion resistance, and appreciable mechanical properties. This article reviews diffusion bonding between titanium alloys and stainless steels with or without interlayers. For diffusion bonding of a titanium alloy and a stainless steel without an interlayer, the optimized temperature is in the range of 800–950°C for a period of 60–120 min. Sound joint can be obtained, but brittle FeTi and Fe-Cr-Ti phases are formed at the interface. The development process of a joint mainly includes three steps: matching surface closure, growth of brittle intermetallic compounds, and formation of the Kirkendall voids. Growth kinetics of interfacial phases needs further clarification in terms of growth velocity of the reacting layer, moving speed of the phase interface, and the order for a new phase appears. The influence of Cu, Ni (or nickel alloy), and Ag interlayers on the microstructures and mechanical properties of the joints is systematically summarized. The content of FeTi and Fe-Cr-Ti phases at the interface can be declined significantly by the addition of an interlayer. Application of multi-interlayer well prevents the formation of intermetallic phases by forming solid solution at the interface, and parameters can be predicted by using a parabolic diffusion law. The selection of multi-interlayer was done based on two principles: no formation of brittle intermetallic phases and transitional physical properties between titanium alloy and stainless steel.

Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Author(s):  
S Giljean ◽  
M Bigerelle ◽  
K Anselme

This study aims to perform a multiscale analysis of abraded surfaces of 316L austenitic stainless steel and titanium alloys (TiAl6V4) grinded at different paper grades. The authors propose to answer the following question: For a given distribution of silicon carbide grains of the paper, what is the best roughness parameter and at which scale must it be evaluated better to discriminate the effect of the mechanical properties of the materials? Paper grades from 80 to 4000 were used under identical pressure and erosion time. It can be concluded that the values of the amplitude roughness parameters depend on the observation scale. It is outlined that the abrasion process is very reproducible. A statistical analysis is then proposed, first, to define a classification of the relevance of the roughness parameters for each grain size distribution, and second, to determine at which scale the mechanical properties of the bulk are more influenced for all paper grades. Finally, at relevant scales, the Abbott amplitude parameters roughness kernel (RK) is the best parameter to discriminate the paper grade effect. The mean distance between asperities (SM) is the preferred method for determining the wear effect on materials and the linear mean normalizing autocorrelation (AMNLN) is the preferred method for determining the interaction between paper grade and materials.


2010 ◽  
Vol 150-151 ◽  
pp. 51-55 ◽  
Author(s):  
Jun Du ◽  
Ping Zhang ◽  
Jun Jun Zhao ◽  
Zhi Hai Cai

Titanium alloys are susceptible to sand erosion, hard zirconium nitride coatings have been deposited onto titanium alloys by Physical vapor deposition (PVD) in order to improve erosion resistance. Al and Cu were added into ZrN coatings to strength and toughing the coating. The microstructure and mechanical properties of ZrAlCuN coating were studied. Erosion tests were conducted to evaluate anti-erosion ability. Erosion rates were measured and characteristic damage features were identified on the surface of eroded specimens. The mechanisms of erosion are discussed in order to explain the promising performance of materials in erosive conditions. It was found that there is an significant increase of erosion resistance because of the increase of hardness and toughness.


MRS Advances ◽  
2019 ◽  
Vol 4 (5-6) ◽  
pp. 271-276 ◽  
Author(s):  
Rui Zhou ◽  
Xuan Wang ◽  
Cheng Liu ◽  
Derek O. Northwood

ABSTRACTCompared with traditional stainless steels, high nitrogen stainless steels (HNSS), have been widely used due to their high strength, toughness along with excellent corrosion resistance and low cost, formed by partial replacement of Ni (austenite-forming element) by N. The evolution of the microstructure of a Cr19Mn19Mo2N0.7 stainless steel is investigated after solution treatment at 1010, 1060, 1200 or 1250°C for 30min. A complex multilayer structure has been found under a negative pressure vacuum. A white ferritic layer at the surface is formed, and a subsurface layer with full austenitic structure and a bulk microstructure comprising of austenite and ferrite are detected. With increasing solution temperature, the surface layer thickness increases. The formation of the multilayer structure is attributed to an outward diffusion, a diffusive retardation and an abnormal accumulation of nitrogen during solution treatment.


Author(s):  
G. Ubertalli ◽  
M. Ferraris ◽  
P. Matteis ◽  
D. Di Saverio

Lean duplex stainless steels have similar corrosion and better mechanical properties than the austenitic grades, which ensure their extensive spreading in industrial applications as a substitute of austenitic grades. In the construction of liquid tanks, however, it is often necessary to weld such steels with a range of fittings which are commonly fabricated with austenitic stainless steel grades. Therefore, this paper examines dissimilar welded joints between LDX 2101 (or X2CrMnNiN22-5-2) lean duplex stainless steels plates and austenitic stainless steel pipes, carried out by different arc welding processes. The investigation focuses on the correlation between the welding procedures and the microstructural and mechanical properties of the welded joints.


Sign in / Sign up

Export Citation Format

Share Document