A Multi-Scale Constitutive Model in High Temperature Deformation of Near Alpha Ti-5.6Al-4.8Sn-2.0Zr Alloy

2010 ◽  
Vol 654-656 ◽  
pp. 1598-1601 ◽  
Author(s):  
Miao Quan Li ◽  
Jiao Luo

Isothermal compression of near alpha Ti-5.6Al-4.8Sn-2.0Zr alloy is conducted on a Thermecmaster-Z simulator at the deformation temperatures ranging from 1173 K to 1333 K, the strain rates ranging from 0.001 s-1 to 10.0 s-1 at an interval of an order magnitude and the height reductions ranging from 50% to 70%. The primary grain size is measured at an OLYMPUS PMG3 microscope with the quantitative metallography SISC IAS V8.0 image analysis software. A multi-scale constitutive model coupling the grain size, volume fraction and dislocation density is established to represent the deformation behavior of near alpha Ti-5.6Al-4.8Sn-2.0Zr alloy in high temperature deformation, in which the flow stress is decomposed a thermal stress and an athermal stress. A Kock-Mecking model is adopted to describe the thermally activated stress, and an athermal stress model accounts for the working hardening and Hall-Petch effect. A genetic algorithm (GA)-based objective optimization technique is used for determining material constants in this study. The mean relative difference between the predicted and experimental flow stress is 5.98%, thus it can be concluded that the multi-scale constitutive model with high prediction precision can efficiently predict the deformation behavior of near alpha Ti-5.6Al-4.8Sn-2.0Zr alloy in high temperature deformation.

2007 ◽  
Vol 539-543 ◽  
pp. 3607-3612 ◽  
Author(s):  
Jeoung Han Kim ◽  
Jong Taek Yeom ◽  
Nho Kwang Park ◽  
Chong Soo Lee

The high-temperature deformation behavior of the single-phase α (Ti-7.0Al-1.5V) and α + β (Ti-6Al-4V) alloy were determined and compared within the framework of self-consistent scheme at various temperature ranges. For this purpose, isothermal hot compression tests were conducted at temperatures between 650°C ~ 950°C to determine the effect of α/β phase volume fraction on average flow stress under hot-working condition. The flow behavior of α phase was estimated from the compression test results of single-phase α alloy whose chemical composition is close to that of α phase of Ti-6Al-4V alloy. On the other hand, the flow stress of β phase in Ti-6Al-4V was predicted by using self-consistent method. The flow stress of α phase was higher than that of β phase above 750°C, while the β phase revealed higher flow stress than α phase at 650°C. Also, at temperature above 750°C, the predicted strain rate of β phase was higher than that of α phase. It was found that the relative strength between α and β phase significantly varied with temperature.


2017 ◽  
Vol 36 (7) ◽  
pp. 701-710
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Xiaolu Zhang ◽  
Wen Wang

AbstractHigh temperature deformation behavior of BFe10-1-2 cupronickel alloy was investigated by means of isothermal compression tests in the temperature range of 1,023~1,273 K and strain rate range of 0.001~10 s–1. Based on orthogonal experiment and variance analysis, the significance of the effects of strain, strain rate and deformation temperature on the flow stress was evaluated. Thereafter, a constitutive equation was developed on the basis of the orthogonal analysis conclusions. Subsequently, standard statistical parameters were introduced to verify the validity of developed constitutive equation. The results indicated that the predicted flow stress values from the constitutive equation could track the experimental data of BFe10-1-2 cupronickel alloy under most deformation conditions.


2014 ◽  
Vol 783-786 ◽  
pp. 258-263 ◽  
Author(s):  
Damir Tagirov ◽  
Daria Zhemchuzhnikova ◽  
Marat Gazizov ◽  
Rustam Kaibyshev

An AA2139 alloy with a chemical composition of Al–4.35Cu-0.46%Mg–0.63Ag-0.36Mn–0.12Ti (in wt.%) and an initial grain size of about 155 μm was subjected to annealing at 430°C for 3 h followed by furnace cooling. This treatment resulted in the formation of a dispersion of coarse particles having essentially plate-like shape. The over-aged alloy exhibits lower flow stress and high ductility in comparison with initial material in the temperature interval 20-450°C. Examination of microstructural evolution during high-temperature deformation showed localization of plastic flow in vicinity of coarse particles. Over-aging leads to transition from ductile-brittle fracture to ductile and very homogeneous ductile fracture at room temperature.


Author(s):  
MK Samal

Development of reliable computational models to predict the high temperature deformation behavior of nickel-based superalloys is in the forefront of materials research. These alloys find wide applications in manufacturing of turbine blades and discs of aircraft engines. The microstructure of these alloys consists of the primary γ′-phase, and the secondary and tertiary precipitates (of Ni3Al type) are dispersed as γ′-phases in the gamma matrix. It is computationally expensive to incorporate the explicit finite element model of the γ-γ′ microstructure in a crystal plasticity-based constitutive framework to simulate the response of the polycrystalline microstructure. Existing models in literature do not account for these underlying micro-structural features which are important for simulation of polycrystalline response. The aim of this work is to develop a physically motivated multi-scale approach for simulation of high temperature response of nickel-based superalloys. At the lower length scale, a dislocation density-based crystal plasticity model is developed which simulates the response of various types of microstructures. The microstructures are designed with various shapes and volume fractions of γ′-precipitates. A new model for simulation of the mechanism of anti-phase boundary shearing of the γ′-precipitates, by the matrix dislocations, is developed in this work. The lower scale model is homogenized as a function of various micro-structural parameters, and the homogenized model is used in the next scale of multi-scale simulation. In addition, a new criterion for initiation of micro-twin and a constitutive model for twin strain accumulation are developed. This new micro-twin model along with the homogenized crystal plasticity model has been used to simulate the creep response of a single crystal nickel-based superalloy, and the results have been compared with those of experiment from literature. It was observed that the new model has been able to model the tension–compression asymmetry as observed in single crystal experiments.


2003 ◽  
Vol 57 (13-14) ◽  
pp. 1903-1909 ◽  
Author(s):  
Kee-Do Woo ◽  
Sug-Won Kim ◽  
Chang-Ho Yang ◽  
Tai Ping Lou ◽  
Yasuhiro Miura

2007 ◽  
Vol 561-565 ◽  
pp. 155-158 ◽  
Author(s):  
Jiao Luo ◽  
Miao Quan Li ◽  
Y.Q. Hu

A constitutive equation has been established to describe the effect of grain size on the deformation behavior of Ti-6.62Al-5.14Sn-1.82Zr alloy during the high temperature. In this paper, firstly a steady flow stress model is proposed, and a function relating to the grain size is introduced to modify the steady flow stress model. Meanwhile, a microstructure model established by the fuzzy neural network method is applied to calculate the grain size of prior α phase during the high temperature deformation of Ti-6.62Al-5.14Sn-1.82Zr alloy. The calculated flow stress using the present constitutive equation shows a good agreement with the experimental flow stress of the Ti-6.62Al-5.14Sn-1.82Zr alloy. The relative maximum error was not more than 15%.


Sign in / Sign up

Export Citation Format

Share Document