Synthesis, Crystal Structure and Fluorescence Property of Terbium Coordination Polymers with Pyridine-3.5-Dicarboxylic Acid

2010 ◽  
Vol 663-665 ◽  
pp. 72-75 ◽  
Author(s):  
Qi Song Shi ◽  
Ben Feng Hu ◽  
Qiu Yan Liang ◽  
Tai Qi Liu

Rare-earth metal-organic frameworks [Tb2(pdc)3(H2O)9]n3nH2O, were synthesized and characterized by elemental analysis, IR spectra and single-crystal X-ray diffraction. The title compound consisted of one-dimensional dual-chains, in which each metal atom is nine-coordinated with oxygen atoms. The carboxylate groups of pdc provided two kinds of coordination ways as bidentate and monodentate. The solid-state photoluminescence measurement exhibited green light-emitting characteristic of terbium (III) coordination polymer, and the fluorescence intensities were stronger than that of the europium compound with the same ligand.

Author(s):  
Jun Wang ◽  
Jian-Qing Tao ◽  
Xiao-Juan Xu ◽  
Chun-Yun Tan

In the title mixed-ligand metal–organic polymeric compound, {[Cd(C14H8O6S)(C16H16N2)]·3H2O}n, the asymmetric unit contains a crystallographically unique CdIIatom, one doubly deprotonated 4,4′-sulfonyldibenzoic acid (H2SDBA) ligand, one 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) molecule and three solvent water molecules. Each CdIIcentre is six-coordinated by two O atoms from a chelating carboxylate group of a SDBA2−ligand, two O atoms from monodentate carboxylate groups of two different SDBA2−ligands and two N atoms from a chelating TMPHEN ligand. There are two coordination patterns for the carboxylate groups of the SDBA2−ligand, with one in a μ1-η1:η1chelating mode and the other in a μ2-η1:η1bis-monodentate mode. Single-crystal X-ray diffraction analysis revealed that the title compound is a one-dimensional double-chain polymer containing 28-membered rings based on the [Cd2(CO2)2] rhomboid subunit. More interestingly, a chair-shaped water hexamer cluster is observed in the compound.


Author(s):  
Jian-Qing Tao

In the title mixed-ligand metal–organic polymeric complex [Cd(C14H8O6S)(C16H16N2)(H2O)]n, the asymmetric unit contains a crystallographically unique CdIIatom, one doubly deprotonated 4,4′-sulfonyldibenzoic acid ligand (H2SDBA), one 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) molecule and one water molecule. Each CdIIcentre is coordinated by two N atoms from the chelating TMPHEN ligand, three O atoms from monodentate carboxylate groups of three different SDBA2−ligands and one O atom from a coordinated water molecule, giving a distorted CdN2O4octahedral geometry. Single-crystal X-ray diffraction analysis reveals that the compound is a one-dimensional double-chain polymer containing 28-membered rings based on Cd2O2clusters, with a Cd...Cd separation of 3.6889 (4) Å. These chains are linked by O—H...O and C—H...O hydrogen bonds to form a three-dimensional supramolecular framework. The framework is reinforced by π–π and C—O...π interactions.


2020 ◽  
Vol 76 (2) ◽  
pp. 148-158
Author(s):  
Fang-Hua Zhao ◽  
Zhong-Lin Li ◽  
Shu-Fang Zhang ◽  
Jian-Hui Han ◽  
Mei Zhang ◽  
...  

Two new metal–organic frameworks (MOFs), namely, three-dimensional poly[diaquabis{μ2-1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene}bis(μ2-glutarato)dinickel(II)] monohydrate], {[Ni2(C5H6O4)2(C16H18N4)2(H2O)2]·H2O} n or {[Ni2(Glu)2(1,4-mbix)2(H2O)2]·H2O} n , (I), and two-dimensional poly[[{μ2-1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene}(μ2-glutarato)zinc(II)] tetrahydrate], {[Zn(C5H6O4)(C16H18N4)]·4H2O} n or {[Zn(Glu)(1,4-mbix)]·4H2O} n (II), have been synthesized hydrothermally using glutarate (Glu2−) mixed with 1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene (1,4-mbix), and characterized by single-crystal X-ray diffraction, IR and UV–Vis spectroscopy, powder X-ray diffraction, and thermogravimetric and photoluminescence analyses. NiII MOF (I) shows a 4-connected 3D framework with point symbol 66, but is not a typical dia network. ZnII MOF (II) displays a two-dimensional 44-sql network with one-dimensional water chains penetrating the grids along the c direction. The solid-state photoluminescence analysis of (II) was performed at room temperature and the MOF exhibits highly selective sensing toward Fe3+ and Cr2O7 2− ions in aqueous solution.


2013 ◽  
Vol 68 (7) ◽  
pp. 797-803
Author(s):  
Doufeng Wu ◽  
Yang Wang ◽  
Qiaowei Li ◽  
Lijuan Zhang

LThree new metal-organic frameworks based on Zn2+ and 1,4-diazoniabicyclo[2.2.2]octane-1,4- diacetate () were synthesized and fully characterized by single-crystal X-ray diffraction and other methods. The linker L provides both positively charged quaternary ammonium centers and a flexible methylene chain, which brings conformational diversity to the system. The same reactants, and the same preparation procedures were used for the syntheses of ZnLCl2 (1), ZnL2(NO3)(OH)·(DMF)·(H2O) (2) and ZnL3(NO3)2(H2O) (3), to study the role of solvents and anions during the synthesis. All three MOFs show one-dimensional networks with different topologies. Closed loops with different ring sizes could be found in 2and 3along the chain. Rings with 22 atoms were found in 2, while the smallest loop in 3contains 44 atoms, including four linkers and four zinc atoms. Clearly, the solvent, stoichiometries of the reactants, and the anions had an impact on the formation of the three distinct network structures.


2020 ◽  
Vol 75 (8) ◽  
pp. 727-732
Author(s):  
Chen Zhang ◽  
Jian-Qing Tao

AbstractA new Cu(II) metal-organic framework, [Cu(L)(OBA)·H2O]n (1) [H2OBA = 4,4′-oxybis(benzoic acid), L = 3,5-di(1H-benzimidazol-1-yl)pyridine] was hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis and single-crystal X-ray diffraction. Complex 1 is a four-connected uni-nodal 2D net with a (44·62) topology which shows an emission centered at λ ∼393 nm upon excitation at λ = 245 nm. Moreover, complex 1 possesses high photocatalytic activities for the decomposition of Rhodamine B (RhB) under UV light irradiation.


Author(s):  
Stephen J. I. Shearan ◽  
Jannick Jacobsen ◽  
Ferdinando Costantino ◽  
Roberto D’Amato ◽  
Dmitri Novikov ◽  
...  

2021 ◽  
Author(s):  
Qing-Xia Yao ◽  
Miaomiao Tian ◽  
Jun Zheng ◽  
Jintang Xue ◽  
Xuze Pan ◽  
...  

A series of microporous Ln(III)-based metal-organic frameworks (1-Ln) have been hydrothermally synthesized by using 4,4',4''-nitrilotribenzoic acid (H3NTB). Single crystal X-ray diffraction analyses show 1-Ln are isostructural and have 3D porous...


2014 ◽  
Vol 70 (a1) ◽  
pp. C157-C157
Author(s):  
Claire Hobday ◽  
Stephen Moggach ◽  
Carole Morrison ◽  
Tina Duren ◽  
Ross Forgan

Metal-organic frameworks (MOFs) are a well-studied class of porous materials with the potential to be used in many applications such as gas storage and catalysis.[1] UiO-67 (UiO = University of Oslo), a MOF built from zirconium oxide units connected with 4,4-biphenyldicarboxylate (BDC) linkers, forms a face centred cubic structure. Zirconium has a high affinity towards oxygen ligands making these bridges very strong, resulting in UiO-based MOFs having high chemical and thermal stability compared to other MOF structures. Moreover, UiO-67 has become popular in engineering studies due to its high mechanical stability.[2] Using high pressure x-ray crystallography we can exert MOFs to GPa pressures, experimentally exploring the mechanical stability of MOFs to external pressure. By immersing the crystal in a hydrostatic medium, pressure is applied evenly to the crystal. On surrounding a porous MOF with a hydrostatic medium composed of small molecules (e.g. methanol), the medium can penetrate the MOF, resulting in medium-dependant compression. On compressing MOF-5 (Zn4O(BDC)3) using diethylformamide as a penetrating medium, the framework was shown to have an increased resistance to compression, becoming amorphous several orders of magnitude higher in pressure than observed on grinding the sample.[3] Here we present a high-pressure x-ray diffraction study on the UiO-based MOF UiO-67, and several new synthesised derivatives built from same metal node but with altered organic linkers, allowing us to study in a systematic way, the mechanical stability of the MOF, and its pressure dependence on both the linker, and pressure medium.


2019 ◽  
Vol 75 (9) ◽  
pp. 1220-1227 ◽  
Author(s):  
Mei-rong Han ◽  
Shao-dong Li ◽  
Ling Ma ◽  
Bang Yao ◽  
Si-Si Feng ◽  
...  

A new mononuclear europium complex incorporating the (+)-di-p-toluoyl-D-tartaric acid (D-H2DTTA) ligand, namely, catena-poly[tris{μ2-3-carboxy-2,3-bis[(4-methylphenyl)carbonyloxy]propanoato}tris(methanol)europium(III)], [Eu(C20H17O8)3(CH3OH)3] n , (I), has been synthesized and characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and single-crystal X-ray diffraction analysis. The structure analysis indicates that complex (I) crystallizes in the trigonal space group R3 and exhibits an infinite one-dimensional chain structure, in which the Eu3+ ion is surrounded by six O atoms from six D-HDTTA− ligands and three O atoms from three coordinated methanol molecules, thus forming a tricapped trigonal prism geometry. The D-H2DTTA ligand is partially deprotonated and adopts a μ1,6-coordination mode via two carboxylate groups to link adjacent Eu3+ ions, affording an infinite one-dimensional propeller-shaped coordination polymer chain along the c axis, with an Eu...Eu distance of 7.622 (1) Å. Moreover, C—H...π interactions lead to the formation of helical chains running along the c axis and the whole structure displays a snowflake pattern in the ab plane. The circular dichroism spectrum confirms the chirality of complex (I). The solid-state photoluminescence properties were also investigated at room temperature and (I) exhibits characteristic red emission bands derived from the Eu3+ ion (CIE 0.63, 0.32), with a reasonably long lifetime of 0.394 ms, indicating effective energy transfer from the ligand to the metal centre. In addition, a magnetic investigation reveals single-ion magnetic behaviour. The spin-orbit coupling parameter (λ) between the ground and excited states is fitted to be 360 (2) cm−1 through Zeeman perturbation. Therefore, complex (I) may be regarded as a chiral optical-magneto bifunctional material.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Xie ◽  
Jie Wu ◽  
Xiaochun Hang ◽  
Honghai Zhang ◽  
Kang shen ◽  
...  

By employment of amino-functionalized dicarboxylate ligands to react with d10 metal ions, four novel metal-organic frameworks (MOFs) were obtained with the formula of {[Cd(BCPAB)(μ2-H2O)]}n (1), {[Cd(BDAB)]∙2H2O∙DMF}n (2), {[Zn(BDAB)(BPD)0.5(H2O)]∙2H2O}n (3) and {[Zn(BDAB)(DBPB)0.5(H2O)]∙2H2O}n (4) (H2BCPAB = 2,5-bis(p-carbonylphenyl)-1-aminobenzene; H2BDAB = 1,2-diamino-3,6-bis(4-carboxyphenyl)benzene); BPD = (4,4′-bipyridine); DBPB = (E,E-2,5-dimethoxy-1,4-bis-[2-pyridin-vinyl]-benzene; DMF = N,N-dimethylformamide). Complex 1 is a three-dimensional (3D) framework bearing seh-3,5-Pbca nets with point symbol of {4.62}{4.67.82}. Complex 2 exhibits a 4,4-connected new topology that has never been reported before with point symbol of {42.84}. Complex 3 and 4 are quite similar in structure and both have 3D supramolecular frameworks formed by 6-fold and 8-fold interpenetrated 2D coordination layers. The structures of these complexes were characterized by single crystal X-ray diffraction (SC-XRD), thermal gravimetric analysis (TGA) and powder X-ray diffraction (PXRD) measurements. In addition, the fluorescence properties and the sensing capability of 2–4 were investigated as well and the results indicated that complex 2 could function as sensor for Cu2+ and complex 3 could detect Cu2+ and Ag+via quenching effect.


Sign in / Sign up

Export Citation Format

Share Document