Un-Bundled Carbon Nanotubes Reinforced Light Metal Composites via Powder Metallurgy Route

2011 ◽  
Vol 690 ◽  
pp. 339-342
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Hiroyuki Fukuda ◽  
Junko Umeda

By using light metal (Mg, Al, Ti) powders coated with un-bundled multi-wall carbon nanotubes (MWCNTs) via wet process, powder metallurgy (P/M) light metal matrix composite reinforced with un-bundled nanotubes was prepared by spark plasma sintering (SPS) and subsequently hot extrusion process. The microstructure and mechanical properties of the composites were evaluated. In the case of pure titanium, the distribution of CNTs and in-situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyzer. The mechanical properties of TMC were significantly improved by the additive of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of tensile specimens were analyzed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed. In the case of Mg-Al alloys, in-situ formation of Al2MgC2compounds at the interface between CNTs and Mg-matrix occurred and effective for the tensile transfer loading, and resulted in the increment of tensile strength of the composite material.

2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Hisashi Imai ◽  
Junko Umeda ◽  
Bunshi Fugetsu

By using pure titanium powder coated with unbundled multiwall carbon nanotubes (MWCNTs) via wet process, powder metallurgy (P/M) titanium matrix composite (TMC) reinforced with the CNTs was prepared by spark plasma sintering (SPS) and subsequently hot extrusion process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyzer. The mechanical properties of TMC were significantly improved by the additive of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of tensile specimens were analyzed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.


2011 ◽  
Vol 1284 ◽  
Author(s):  
Yogeeswaran Ganesan ◽  
Cheng Peng ◽  
Lijie Ci ◽  
Valery Khabashesku ◽  
Pulickel M. Ajayan ◽  
...  

ABSTRACTWe report on the usage of a simple microfabricateddevice, that works in conjunction with a quantitative nanoindenter inside a scanning electron microscope (SEM), for the in situ quantitative tensile testing of individual sidewall fluorinated multi-wall carbon nanotubes (MWNTs). The stress vs. strain curves and the tensile strength values for five fluorinated specimens have been presented and compared to those of pristine MWNT specimens (data reported earlier). The fluorinated specimens were found to deform and fail in a brittle fashion similar to pristine MWNTs. However, sidewall fluorination was found to have considerably degraded the mechanical properties (tensile strength and load bearing capacity) of the MWNTs.


2009 ◽  
Vol 618-619 ◽  
pp. 495-499 ◽  
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Junko Umeda ◽  
Hisashi Imai ◽  
Bunshi Fugetsu

Powder metallurgy (P/M) titanium matrix composite (TMC) reinforced with multi-wall carbon nanotube (MWCNT) was prepared by spark plasma sintering (SPS) and hot extrusion process, where the powder surface was coated by un-bundled CNTs via wet process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in-situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyser. The mechanical properties of TMC were significantly improved by adding a small amount of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of specimens were analysed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.


2012 ◽  
Vol 268-270 ◽  
pp. 365-370 ◽  
Author(s):  
Ying Ma ◽  
Zhong Ming Zhang ◽  
Zhen Lin Lv ◽  
Chun Jie Xu

Mg-1Si alloy doped with 1%Y was prepared by in-situ reaction synthesis. The effect of hot extrusion on the microstructure and elevated-temperature mechanical properties of the alloy was studied. The microstructures were analyzed by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffractometry. The results show that as-cast Mg-1Si-1Y alloy consists of dendritic α-Mg phase, eutectic needle-like Mg2Si phase and Mg24+xY5 phase precipitated from α-Mg, Mg2Si can be modified and refined by yttrium, and α-Mg grains can be refined by dynamic recrystallization occurred in hot extrusion process. The tensile strength and elongation of the alloy at ambient temperature are improved prominently by hot extrusion. The tensile strength and elongation of the extruded alloy is 185.3MPa and 24.3% at 120°C. The improved elevated-temperature properties of the alloy are ascribed to the fine-grained strengthening and dispersion strengthening from Mg2Si and Mg24+xY5 particles.


2009 ◽  
Vol 69 (7-8) ◽  
pp. 1077-1081 ◽  
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Hisashi Imai ◽  
Junko Umeda ◽  
Bunshi Fugetsu

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3140 ◽  
Author(s):  
Zhun Cheng ◽  
Xiaoqiang Li ◽  
Minai Zhang ◽  
Shengguan Qu ◽  
Huiyun Li

In this study, K417G Ni-based superalloy with a 20-mm gap was successfully bonded at 1200 °C using powder metallurgy with a powder mixture. The results indicated that the microstructure and mechanical properties of the as-bonded alloy were highly dependent on the brazing time (15–45 min), mainly due to the precipitation and distribution characteristics of M3B2 boride particles. Specifically, alloy brazed for 30 min exhibited desirable mechanical properties, such as a high tensile ultimate strength of 971 MPa and an elongation at fracture of 6.5% at room temperature, exceeding the balance value (935 MPa) of the base metal. The excellent strength and plasticity were mainly due to coherent strengthening and dispersion strengthening of the in situ spherical and equiaxed M3B2 boride particles in the γ + γ′ matrix. In addition, the disappearance of dendrites and the homogenization of the microstructure are other factors that cannot be excluded. This powder metallurgy technique, which can avoid the eutectic transformation of traditional brazing, provides a new effective method for wide-gap repair of alloy materials.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Pravir Kumar ◽  
Katerina Skotnicova ◽  
Ashis Mallick ◽  
Manoj Gupta ◽  
Tomas Cegan ◽  
...  

The present study investigated the effects of alloying and nano-reinforcement on the mechanical properties (microhardness, tensile strength, and compressive strength) of Mg-based alloys and composites. Pure Mg, Mg-3Sn alloy, and Mg-3Sn + 0.2 GNP alloy-nanocomposite were synthesized by powder metallurgy followed by hot extrusion. The microstructural characteristics of the bulk extruded samples were explored using X-ray diffraction, field-emission scanning electron microscopy, and optical microscopy and their mechanical properties were compared. The microhardness, tensile strength, and compressive strength of the Mg-3Sn alloy improved when compared to those of monolithic Mg sample and further improvements were displayed by Mg-3Sn + 0.2 GNP alloy-nanocomposite. No significant change in the compressive strain to failure was observed in both the alloy and the alloy-nanocomposite with respect to that of the pure Mg sample. However, an enhanced tensile strain to failure was displayed by both the alloy and the alloy-nanocomposite.


Author(s):  
Pravir Kumar ◽  
Katerina Skotnicova ◽  
Ashis Mallick ◽  
Manoj Gupta ◽  
Tomas Cegan ◽  
...  

The present study investigated the effects of alloying and nano-reinforcement on the mechanical properties (microhardness, tensile strength, and compressive strength) of Mg-based alloys and composites. Pure Mg, Mg-3Sn alloy, and Mg-3Sn+0.2GNP alloy-nanocomposite were synthesized by powder metallurgy followed by hot extrusion. The microstructural characteristics of the bulk extruded samples were explored using X-ray diffraction, field-emission scanning electron microscopy, and optical microscopy and their mechanical properties were compared. The microhardness, tensile strength, and compressive strength of the Mg-3Sn alloy improved when compared to those of monolithic Mg sample and further improvements were displayed by Mg-3Sn+0.2GNP alloy-nanocomposite. No significant change in the compressive strain to failure was observed in both the alloy and the alloy-nanocomposite with respect to that of the pure Mg sample. However, an enhanced tensile strain to failure was displayed by both the alloy and the alloy-nanocomposite.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Martino Colonna ◽  
Corrado Berti ◽  
Enrico Binassi ◽  
Maurizio Fiorini ◽  
Francesco Acquasanta ◽  
...  

AbstractMulti-wall carbon nanotubes/poly(butylene terephthalate) nanocomposites have been prepared by in-situ polymerization. Benzimidazolium tetrafluoroborate salts improve the dispersion of carbon nanotubes in the polymer matrix due to the formation of “π-cation” interactions of the imidazolium salt with the surface of the carbon nanotubes. An improved dispersion of the nanotubes in butanediol was also observed using the benzimidazolium salt. The presence of the compatibilization agent gives rise to improved thermo-mechanical properties and electrical conductivity for the nanocomposite. The presence of the nanotubes also consistently increases the thermal stability and enhances the nucleation process on PBT crystallization.


Sign in / Sign up

Export Citation Format

Share Document