Effect of Sintering Temperature on Microstructure and Mechanical Properties of Al2O3/TiAl In-Situ Composites

2011 ◽  
Vol 695 ◽  
pp. 227-230
Author(s):  
Liu Yi Xiang ◽  
Fen Wang ◽  
Jian Feng Zhu ◽  
Xiao Feng Wang

Al2O3/TiAl composites were successfully fabricated by hot-press-assisted exothermic dispersion method with powder mixtures of Ti, Al, TiO2and Cr2O3as raw materials. The effect of sintering temperature on the microstructures and mechanical properties of Al2O3/TiAl composites has been investigated. The results show that the Rockwell hardness and density of the composites increased with increasing sintering temperature. But the flexural strength and fracture toughness peaked at 825 MPa and 7.29 MPa·m1/2, respectively, when the sintering temperature reached to1300 °C.

2011 ◽  
Vol 194-196 ◽  
pp. 1736-1739
Author(s):  
Fen Wang ◽  
Liu Yi Xiang ◽  
Jian Feng Zhu ◽  
Dong Li ◽  
Xiao Feng Wang

Al2O3/TiAl composites were successfully fabricated by hot-press-assisted exothermic dispersion method with elemental powder mixtures of Ti, Al, TiO2and Cr2O3. The effect of Cr2O3addition on the microstructures and mechanical properties of Al2O3/TiAl composites has been characterized. The results show that the Rockwell hardness, flexural strength and fracture toughness of the composites increase with increasing Cr2O3content. When the Cr2O3content is 3.5 wt %, the flexural strength and the fracture toughness reach the maximum value of 658.7 MPa and 7.2 MPa•m1/2, respectively. The improvement of mechanical properties is firstly associated with a more homogeneous and finer microstructure developed by addition of Cr2O3; secondly, it is related to the increase of the ratio of α2-Ti3Al/γ- TiAl matrix phases.


2015 ◽  
Vol 47 (3) ◽  
pp. 311-317 ◽  
Author(s):  
F. Wang ◽  
N. Fan ◽  
J. Zhu ◽  
H. Jiang

Al2O3/TiAl composites were successfully fabricated from powder mixtures of Ti, Al, TiO2, Cr2O3 and Nb2O5 by a hot-press-assisted exothermic dispersion method. The effect of the Cr2O3 and Nb2O5 addition on the microstructures and mechanical properties of Al2O3/TiAl composites was characterized. The results showed that the specimens are mainly composed of TiAl, Ti3Al, Al2O3, NbAl3 and Cr2Al. The Vicker-hardness and density of Al2O3/TiAl composites increase gradually with the increase of Nb2O5 content. When the Nb2O5 content was 6.54 wt %, the flexural strength and fracture toughness of the composites have a maximum values of 789.79 MPa and 9.69 MPa?m1/2, respectively. The improvement of mechanical properties is discussed in detail.


2012 ◽  
Vol 581-582 ◽  
pp. 548-551 ◽  
Author(s):  
Guo Quan Qi ◽  
Feng Shou Shangguan ◽  
Li Neng Yang ◽  
Qiang Bai ◽  
Gang Wu

Al2O3/NiAl composites were successfully fabricated by hot-press-assisted exothermic dispersion method with elemental powder mixtures of Ni, Al, NiO. The content of Al2O3 on the microstructures and mechanical properties of Al2O3/NiAl composites has been characterized. The results show that the Vickers hardness, flexural strength and fracture toughness of the composites increase with increasing Al2O3 content. When the Al2O3 content is 15 wt %, the flexural strength and the fracture toughness peaked at 765 MPa and 9.67 MPa•m 1/2, respectively. The improvement of mechanical properties is associated with a more homogeneous and finer microstructure developed by addition of Al2O3.


2011 ◽  
Vol 217-218 ◽  
pp. 680-683
Author(s):  
Jian Feng Zhu ◽  
Wen Wen Yang ◽  
Yi Ping Gong

TiAl/Ti2AlC composites were successfully fabricated by hot-press-assisted reactive synthesis method from elemental powder mixtures of Ti, Al and C. The effect of C addition on the microstructures and mechanical properties of TiAl/Ti2AlC composites was investigated in detail. The results show that the Rockwell hardness, flexural strength and fracture toughness of the composites are modified by incorporation of in situ formed Ti2AlC. When the C content was 0.44 wt %, the flexural strength and the fracture toughness reach the maximum values of 658.7 MPa and 10.03 MPa•m1/2, respectively. The reinforcing mechanism was also discussed.


2011 ◽  
Vol 675-677 ◽  
pp. 597-600
Author(s):  
Liu Yi Xiang ◽  
Fen Wang ◽  
Jian Feng Zhu ◽  
Xiao Feng Wang

Al2O3/TiAl in situ composites were successfully prepared by vacuum hot-pressing method with elemental powder mixtures of Ti, Al, TiO2 and Fe2O3. The effect of Fe2O3 addition on the microstructures and mechanical properties of Al2O3/TiAl composites has been investigated. The results show that the Rockwell hardness, flexural strength and fracture toughness of the composites increase with increasing Fe2O3 content. When the Fe2O3 content is 0.84 wt %, the flexural strength and the fracture toughness reach the maximum value of 624 MPa and 6.63 MPa·m1/2, respectively. The improvement of mechanical properties is firstly associated with a more homogeneous and finer microstructure developed by addition of Fe2O3; secondly, it is related to the increase of the ratio of α2-Ti3Al/γ- TiAl matrix phases.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


2008 ◽  
Vol 368-372 ◽  
pp. 1764-1766 ◽  
Author(s):  
Yu Jin Wang ◽  
Lei Chen ◽  
Tai Quan Zhang ◽  
Yu Zhou

The ZrC-W composites with iron as sintering additive were fabricated by hot-press sintering. The densification, microstructure and mechanical properties of the composites were investigated. The incorporation of Fe beneficially promotes the densification of ZrC-W composites. The relative density of the composite sintered at 1900°C can attain 95.3%. W2C phase is also found in the ZrC-W composite sintered at 1700°C. The content of W2C decreases with the increase of sintering temperature. However, W2C phase is not identified in the composite sintered at 1900°C. The flexural strength and fracture toughness of the composites are strongly dependent on sintering temperature. The flexural strength and fracture toughness of ZrC-W composite sintered at optimized temperature of 1800°C are 438 MPa and 3.99 MPa·m1/2, respectively.


2015 ◽  
Vol 816 ◽  
pp. 200-204 ◽  
Author(s):  
Miao Miao Ruan ◽  
Xiao Ming Feng ◽  
Tao Tao Ai ◽  
Ning Yu ◽  
Kui Hua

TiC/Ti3AlC2 composites were successfully prepared by hot-pressing sintering method from the elemental powder mixtures of Ti, Al and TiC. A possible reaction mechanism was investigated by XRD. The density, Vickers hardness, flexural strength, and fracture toughness of the TiC/Ti3AlC2 composites were also measured. At 660 °C, Al melted and reacted with Ti to form TiAl3. At 900 °C, TiAl3 reacted with TiC and Ti to form Ti2AlC. At 1100 °C, Ti2AlC reacted with TiC to form Ti3AlC2. Increasing the sintering temperature, the content of Ti3AlC2 increased. The TiC/Ti3AlC2 composites had excellent performance after sintered at 1100 °C, the density, Vickers hardness, flexural strength and fracture toughness of the composite were 4.35 g/cm3, 4.72 GPa, 566 MPa and 6.18 MPa·m1/2, respectively.


2010 ◽  
Vol 44-47 ◽  
pp. 2504-2508 ◽  
Author(s):  
Jian Feng Zhu ◽  
Lan Ye ◽  
Xi Hong Li ◽  
Fen Wang

A novel method of the combination of high energy milling and hot pressing was adapted to fabricate dense titanium nitride-alumina (TiN/Al2O3) in situ composites using Ti, Al and TiO2 as raw materials. Full dense and pure TiN/Al2O3 composites were fabricated at 1300 °C for 1 h under 10 MPa. The composition, microstructure and mechanical properties of the as-fabricated products were investigated. The results show that the synthesized TiN/Al2O3 composites possess high purity. The TiN/Al2O3 composites have a good combination of mechanical properties of hardness of 18.0 GPa, the flexural strength of 500 MPa, and the fracture toughness (KIC) of 5.2 MPa•m1/2. The strengthening and toughening mechanisms are also discussed.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1428
Author(s):  
Heng Luo ◽  
Chen Li ◽  
Lianwen Deng ◽  
Yang Li ◽  
Peng Xiao ◽  
...  

In situ grown C0.3N0.7Ti and SiC, which derived from non-oxide additives Ti3SiC2, are proposed to densify silicon nitride (Si3N4) ceramics with enhanced mechanical performance via hot-press sintering. Remarkable increase of density from 79.20% to 95.48% could be achieved for Si3N4 ceramics with 5 vol.% Ti3SiC2 when sintered at 1600 °C. As expected, higher sintering temperature 1700 °C could further promote densification of Si3N4 ceramics filled with Ti3SiC2. The capillarity of decomposed Si from Ti3SiC2, and in situ reaction between nonstoichiometric TiCx and Si3N4 were believed to be responsible for densification of Si3N4 ceramics. An obvious enhancement of flexural strength and fracture toughness for Si3N4 with x vol.% Ti3SiC2 (x = 1~20) ceramics was observed. The maximum flexural strength of 795 MPa for Si3N4 composites with 5 vol.% Ti3SiC2 and maximum fracture toughness of 6.97 MPa·m1/2 for Si3N4 composites with 20 vol.% Ti3SiC2 are achieved via hot-press sintering at 1700 °C. Pull out of elongated Si3N4 grains, crack bridging, crack branching and crack deflection were demonstrated to dominate enhance fracture toughness of Si3N4 composites.


Sign in / Sign up

Export Citation Format

Share Document