scholarly journals Effect of Sintering Temperature on Microstructure and Mechanical Properties of Hot-Pressed Fe/FeAl2O4 Composite

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Chuang Wang ◽  
Hongyan Yan ◽  
Hui Li ◽  
...  

The Fe/FeAl2O4 cermet was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method at 1400 °C. The raw materials for the powder particles were respectively 2 µm (Fe), 0.5 µm (Fe2O3), and 0.5 µm (Al2O3) in diameter, the sintering pressure was 30 MPa, and the holding time was 120 min. The effects of different Fe mass ratios on the microstructure and mechanical properties of Fe/FeAl2O4 cermet were studied. The results showed that a new ceramic phase FeAl2O4 could be formed by an in situ reaction during the hot press sintering. When the Fe mass ratio was increased, the microstructure and mechanical properties of the Fe/FeAl2O4 cermet showed a change law that initially became better and then became worse. The best microstructure and mechanical properties were obtained in the S2 sample, where the mass ratio of Fe-Fe2O3-Al2O3 was 6:1:2. In this Fe mass ratio, the relative density was about 94%, and the Vickers hardness and bending strength were 1.21 GPa and 210.0 MPa, respectively. The reaction mechanism of Fe in the preparation process was the in situ synthesis reaction of FeAl2O4 and the diffusion reaction of Fe to FeAl2O4 grains. The increase of the Fe mass ratio improved the wettability of Fe and FeAl2O4, which increased the diffusion rate of Fe to FeAl2O4 grains, which increased the influence on the structure of FeAl2O4.


2013 ◽  
Vol 457-458 ◽  
pp. 152-155
Author(s):  
Wen Zheng Dong ◽  
Qi Quan Lin ◽  
Tao Jiang ◽  
Zhi Gang Wang

The sintering behavior and the resulting of cermet are influenced not only by the characteristics and impurities of the raw materials but also are found to be dependent on the thermal history during the fabrication process. Our work is concerned with the effect of sintering temperature on the mechanical properties of 17Ni/(10NiO-NiFe2O4) cermet. The nickel ferrite based cermet were prepared by hot-press sintering technology at 16MPa and sintered at temperatures ranging from 900 to 1200°C. The microstructure, phase compositions and mechanical properties were studied by SEM, XRD and three point bending strength tests respectively. It has been found that, the relative density, hardness and bending strength of NiFe2O4 based cermet have a great influence upon the sintering temperature, and an optimal sintering temperature, e.g. 1100°C is chosen through our experiments. The highest bending strength of 125.89Mpa could be obtained under the sintering temperature of 1100°C. Meanwhile, the thermal shock resistance increases as the sintering temperature increases.


2013 ◽  
Vol 589-590 ◽  
pp. 572-577 ◽  
Author(s):  
Hua He Liu ◽  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Ya Cong Chai

Al2O3-MgO, Al2O3-Y2O3 and Al2O3-MgO-Y2O3 composite ceramics were fabricated respectively by hot-press sintering technique. With the analysis of the mechanical properties and microstructure, it was found that single additive MgO could be more favorable to the grains’ refinement and densification than Y2O3; the composite additive including both MgO and Y2O3 was better than single additive MgO or Y2O3, because their interactions could improve the mechanical properties of the Al2O3 ceramics; The sintering temperature could be reduced by adding the suitable amount of composite additives.


2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


2008 ◽  
Vol 368-372 ◽  
pp. 1764-1766 ◽  
Author(s):  
Yu Jin Wang ◽  
Lei Chen ◽  
Tai Quan Zhang ◽  
Yu Zhou

The ZrC-W composites with iron as sintering additive were fabricated by hot-press sintering. The densification, microstructure and mechanical properties of the composites were investigated. The incorporation of Fe beneficially promotes the densification of ZrC-W composites. The relative density of the composite sintered at 1900°C can attain 95.3%. W2C phase is also found in the ZrC-W composite sintered at 1700°C. The content of W2C decreases with the increase of sintering temperature. However, W2C phase is not identified in the composite sintered at 1900°C. The flexural strength and fracture toughness of the composites are strongly dependent on sintering temperature. The flexural strength and fracture toughness of ZrC-W composite sintered at optimized temperature of 1800°C are 438 MPa and 3.99 MPa·m1/2, respectively.


2017 ◽  
Vol 726 ◽  
pp. 297-302
Author(s):  
Chang Chun Lv ◽  
Yu Jia Zhai ◽  
Cheng Biao Wang ◽  
Zhi Jian Peng

TiCN-based cermets were prepared by hot-press sintering through adding various amounts of AlN nanopowder (0-20 wt.%) into a 64 wt.% TiC0.5N0.5-10 wt.% WC-8.5 wt.% Mo-12.5 wt.% Ni-5 wt.% Co system. The microstructure and mechanical properties of the prepared cermets were investigated. For the prepared cermets, samples with 5 wt.% AlN nanopowder exhibited optimum mechanical properties of Vickers hardness 2191 HV10, bending strength 601 MPa, and fracture toughness 6.03 MPa.m1/2, respectively.


2011 ◽  
Vol 695 ◽  
pp. 227-230
Author(s):  
Liu Yi Xiang ◽  
Fen Wang ◽  
Jian Feng Zhu ◽  
Xiao Feng Wang

Al2O3/TiAl composites were successfully fabricated by hot-press-assisted exothermic dispersion method with powder mixtures of Ti, Al, TiO2and Cr2O3as raw materials. The effect of sintering temperature on the microstructures and mechanical properties of Al2O3/TiAl composites has been investigated. The results show that the Rockwell hardness and density of the composites increased with increasing sintering temperature. But the flexural strength and fracture toughness peaked at 825 MPa and 7.29 MPa·m1/2, respectively, when the sintering temperature reached to1300 °C.


2020 ◽  
Author(s):  
Baofu Qiu ◽  
Xiaoming Duan ◽  
Zhuo Zhang ◽  
Chen Zhao ◽  
Bo Niu ◽  
...  

Abstract BN-La2O3-Al2O3-SiO2 composite ceramics were fabricated by hot press sintering using h-BN, La2O3, Al2O3 and amorphous SiO2 as the raw materials. The effects of sintering temperature on the microstructural evolution, bulk density, apparent porosity, and mechanical properties of h-BN composite ceramics were investigated. The results indicated that ternary La2O3-Al2O3-SiO2 liquid phase was formed during sintering process, which provided an environment for the growth of h-BN grains. With increasing sintering temperature, the cristobalite phase precipitation and h-BN grain growth occurred at the same time, which had the significant influence on the densification and mechanical properties of h-BN composite ceramics. The best mechanical properties of BN-La2O3-Al2O3-SiO2 composite ceramics were obtained under sintering temperature of 1700 °C, and the elastic modulus, flexural strength, and fracture toughness were 80.5 GPa, 266.4 MPa and 3.25 MPa·m1/2, respectively.


2014 ◽  
Vol 602-603 ◽  
pp. 438-442
Author(s):  
Lei Yu ◽  
Jian Yang ◽  
Tai Qiu

Fully dense (ZrB2+ZrC)/Zr3[Al (Si)]4C6 composites with ZrB2 content varying from 0 to 15 vol.% and fixed ZrC content of 10 vol.% were successfully prepared by in situ hot-pressing in Ar atmosphere using ZrH2, Al, Si, C and B4C as raw materials. With the increase of ZrB2 content, both the bending strength and fracture toughness of the composites increase and then decrease. The synergistic action of ZrB2 and ZrC as reinforcements shows significant strengthening and toughing effect to the Zr3[Al (Si)]4C6 matrix. The composite with 10 vol.% ZrB2 shows the optimal mechanical properties: 516 MPa for bending strength and 6.52 MPa·m1/2 for fracture toughness. With the increase of ZrB2 content, the Vickers hardness of the composites shows a near-linear increase from 15.3 GPa to 16.7 GPa. The strengthening and toughening effect can be ascribed to the unique mechanical properties of ZrB2 and ZrC reinforcements, the differences in coefficient of thermal expansion and modulus between them and Zr3[Al (Si)]4C6 matrix, fine grain strengthening and uniform microstructure derived by the in situ synthesis reaction.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Juntong Huang ◽  
Zhaohui Huang ◽  
Shaowei Zhang ◽  
Minghao Fang ◽  
Yan’gai Liu

Si3N4-SiCpcomposites reinforced byin situcatalytic formed nanofibers were prepared at a relatively low sintering temperature. The effects of catalyst Co on the phase compositions, microstructures, and physicochemical-mechanical properties of samples sintered at 1350°C–1450°C were investigated. The results showed that the catalyst Co enhanced the nitridation of Si. With the increase of Co addition (from 0 wt% to 2.0 wt.%), the apparent porosity of as-prepared refractories was initially decreased and subsequently increased, while the bulk density and the bending strength exhibited an opposite trend. TheSi3N4-SiCpcomposites sintered at 1400°C had the highest strength of 60.2 MPa when the Co content was 0.5 wt.%. The catalyst Co facilitated the sintering ofSi3N4-SiCpcomposites as well as the formation of Si3N4nanofibers which exhibited network connection and could improve their strength.


Sign in / Sign up

Export Citation Format

Share Document