The Experimental Research of Tension and Performance of Press for 6061 Aluminum Alloy

2011 ◽  
Vol 704-705 ◽  
pp. 1519-1525
Author(s):  
Tong Mei Xiao ◽  
Jian Zhang ◽  
Zhi Hua Wang ◽  
Da Sen Bi

Tensile properties of 6061 aluminum alloy sheet were investigated by means of electric universal test machine, scanning electron microscopy ( SEM) etc.and compared with those parameters of 6010 aluminum alloy; By using machine performance parameters of 6061 aluminum alloy ,finite element software eta/DYNAFORM of Sheet Forming made the numerical simulation of Erichsen tester process of 6061 aluminum alloy sheet ,and the result of numerical simulation compared with actual Erichsen tester. The press forming performance of 6061 alloy sheet have been analyzed.The results show that compared with 6010 aluminum alloy, proof strength σs and tensile strength σb of 6061 aluminum alloy sheet exhibits worse,but even percentage elongation δ of 6061 alloy sheet exhibits similar; The value IE of numerical simulation exhibits similar with actual value IE. So 6061 aluminum alloy sheet have formability in a certain extent and apply in some fields of automobile instead of 6010 aluminum alloy.

2011 ◽  
Vol 704-705 ◽  
pp. 1473-1479
Author(s):  
Jian Zhang ◽  
Yu Lin Ning ◽  
Ben Dong Peng ◽  
Zhi Hua Wang ◽  
Da Sen Bi

6xxx based alloy auto body sheet will be used widely in the future, but, in the recent, one of the difficulty in practice is its poor formability. In this paper properties parameters of 6061 aluminum alloy sheet are investigated by means of examination; By using machine performance parameters of 6061 aluminum alloy, finite element software eta/DYNAFORM of Sheet Forming make the numerical simulation of auto deck lid outer panel .Stress, plastic strain, thick variety are analyzed; and the wrinkling and cracking prone areas identified. Therefore, the effective reference can be provided for design of forming process of 6xxx Based Alloy auto panel.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1168 ◽  
Author(s):  
Zhen Xu ◽  
Sixue Wang ◽  
Hongbin Wang ◽  
Hua Song ◽  
Shengli Li ◽  
...  

In this study, a twin-roll casting sheet of 6061 aluminum alloy was cooled using furnace, asbestos, air, wind and water. The effect of cooling rate on the microstructure and properties of twin-roll casting 6061 aluminum alloy sheet were studied. Optical microscope, scanning electron microscope, X-ray diffraction, microhardness tester and universal tensile machine were used to observe the microstructure and properties of twin-roll casting sheet of 6061 aluminum alloy. The results show that the higher the cooling rate, the smaller the grain size of the alloy and the smaller the number of precipitated phases in the matrix. Uniform grain size of the alloy could be obtained at a stable cooling rate. The hardness, tensile strength and elongation of the twin-roll casting sheet increased with cooling rate. Under wind cooling condition, the twin-roll casting sheet demonstrated excellent comprehensive performance, i.e., 88 MPa of yield strength, 178 MPa of tensile strength and 15% of elongation, respectively. A quantitative Hall–Petch relation was established to predict the yield strength of 6061 twin-roll casting sheets with different grain sizes and cooling rate.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5901-5906
Author(s):  
JUNG GIL SHIM ◽  
YOUNG TAG KEUM

In this study, the FEM material model based on the crystal plasticity is introduced for the numerical simulation of deep drawing process of A5052 aluminum alloy sheet. For calculating the deformation and stress in a crystal of aluminum alloy sheet, Taylor's model is employed. To find the texture evolution, the crystallographic orientation is updated by computing the crystal lattice rotation. In order to verify the crystal plasticity-based FEM material model, the strain distribution and the draw-in amount are compared with experimental measurements. The crystal FEM strains agree well with measured strains. The comparison of draw-in amount shows less 1.96% discrepancy. Texture evolution depends on the initial texture.


2019 ◽  
Vol 944 ◽  
pp. 85-91
Author(s):  
Yan Qi Wang ◽  
Yong Qi Cheng ◽  
Peng Zhang ◽  
Gan Luo ◽  
Peng Bin Li ◽  
...  

With the development of lightweight vehicles, aluminum alloy sheets are increasingly used in the automotive field. However, the aluminum alloy sheet has poor forming performance at room temperature. Therefore, how to improve the sheet metal forming performance of aluminum alloy sheet has become one of the current research hotspots. In this paper, the effects of different lubricants on the deep drawing forming properties of 6061 aluminum alloy sheets were studied by cupping experiments. The effects of lubricants on the deep drawing of sheet metal forming and the wall thickness of cups after deep drawing were explored. The results show that under the condition of drawing speed of 3MPa and 200mm/min, the ultimate drawing ratio of the sheet under oil lubrication is 1.92, and the PTFE film is 2.16. Grease and graphite lubrication are respectively 2.12 and 2.03, using PTFE film lubrication can increase by about 10% contrast with the oil lubrication. The measurement of the wall thickness of the cup under the forming limit state shows that the position with the largest reduction rate appears in the rounded transition zone, and the wall portion of the cylindrical member increases with the height of the wall, and the thickness from the bottom of the cup to the bottom of the cup. The edges all show a trend of decreasing first and then increasing.


2019 ◽  
Vol 6 (4) ◽  
pp. 046526
Author(s):  
Liang Guo ◽  
Peng Cai ◽  
Hao Wang ◽  
Yao Chen ◽  
Qingmao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document