The Effect of Hybrid Ultrasonic Pulse Current Parameters on VPTIG Arc Pressure and Weld Formation

2011 ◽  
Vol 704-705 ◽  
pp. 770-774 ◽  
Author(s):  
Bo Jin Qi ◽  
Wei Li ◽  
Bao Qiang Cong ◽  
Ming Xuan Yang

Based on a novel arc welding device which can provide hybrid ultrasonic pulse current, the effect of hybrid pulsed current parameters on the arc pressure and weld formation during the aluminum alloy welding process was investigated. The experiment results show that, compared with normal VPTIG process, hybrid ultrasonic pulse VPTIG process gets greater arc pressure. Under the condition of keeping the RMS of positive current unchanged, lowering duty ratio has an evident effect on increasing arc pressure. At proper frequency range, increasing the pulse frequency and decreasing the pulse duty ratio can increase the depth and width of the weld, improve weld penetration rate correspondingly, and be beneficial to improve weld quality.

2014 ◽  
Vol 633-634 ◽  
pp. 634-637
Author(s):  
Li Ming Liu ◽  
Chao Song ◽  
Qiu Ping Song ◽  
Gang Song

This paper proposed a method on accurate phase matching control between the pulse laser and the AC TIG arc in real time, and a pulse laser-arc hybrid heat source phase matching control system is developed as well. With the utilization of this system in two typical matching cases that the pulse laser acts on the peak and the trough of the arc welding current waveform, effect regulations on weld formation, weld penetration depth and hybrid plasma shape are studied during welding on magnesium alloy AZ61. Results indicate that, when the pulse laser acting on the peak of arc welding current waveform, the weld formation is better than that of on the trough. However, when pulse laser act on the arc trough the weld penetration depth is deeper than that of on the peak.


2021 ◽  
Vol 72 ◽  
pp. 168-178
Author(s):  
Guodong Peng ◽  
Baohua Chang ◽  
Guoqing Wang ◽  
Yanjun Gao ◽  
Runshi Hou ◽  
...  

2020 ◽  
Vol 19 (01) ◽  
pp. 131-146
Author(s):  
Aditya Kumar ◽  
Kulwant Singh

An exothermic flux for submerged arc welding process has been developed which is capable of enhancing weld penetration of the joint. For this purpose, thermit mixture in different proportions (20% and 40%) has been added to the parent flux by agglomeration process. Beads on plate were deposited using parent and developed exothermic fluxes for a comparative study. EH14 filler wires in combination with parent and exothermic fluxes were used in this investigation. The effects of welding parameters and exothermic flux on weld penetration were investigated and the results have been presented in this paper. It has been found that the penetration increases from 2.95 to 3.51[Formula: see text]mm with 40% thermit mixture addition to the parent flux. It is further observed that penetration increases with increase in the amount of thermit mixture added. A mathematical model has been developed to predict weld penetration or select suitable welding parameters to obtain the desired penetration. The significance of coefficients was tested using Student’s [Formula: see text]-test and the adequacy of developed model was tested using [Formula: see text]-test. The effects of various parameters on penetration have been presented in graphical form for better understanding.


Metals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 512 ◽  
Author(s):  
Bo Wang ◽  
Xun-Ming Zhu ◽  
Hong-Chang Zhang ◽  
Hong-Tao Zhang ◽  
Ji-Cai Feng

2014 ◽  
Vol 1049-1050 ◽  
pp. 31-34
Author(s):  
Shuang Shuang Liu ◽  
Yu Jun Xue ◽  
Yang Yang Xu ◽  
Ji Shun Li

Ni-ZrO2-CeO2 nanocomposite coating was prepared by pulse electrodeposition. The effect of addition of ZrO2 and CeO2 nanoparticles, average current density, duty cycle and pulse current on microhardness of Ni-ZrO2-CeO2 nanocomposites were studied. The results show that microhardness of nanocomposite is increased at first and then decreased with the increasing additive amounts of two kinds of nanoparticles. With increasing reverse the average current density, the microhardness of the composite coating increases. Also, the microhardness of nanocomposite fall with the increasing of pulse frequency. With the positive duty ratio increasing, the microhardness of the composite coating increase at first and then decreased, but with the increasing of the reverse duty ratio, the microhardness of nanocomposite coating is gradually decreased.


2013 ◽  
Vol 763 ◽  
pp. 174-178 ◽  
Author(s):  
Jie Zhu ◽  
Jia Cheng Guo ◽  
Wei Wang ◽  
Jia You Wang

A novel process of ultrasonic-assisted underwater wet arc welding was proposed to improve the joint properties, a number of ultrasonic-assisted underwater welding experiments were then carried out, and the effects of pulse frequency on weld formation, joint hardness and microstructure were investigated. Experimental results show that the ultrasonic frequency pulsation of arc can improve weld penetration while reducing effectively the hardness of joint HAZ in the arc axial direction and refining the grain of microstructure, and the effects of which are related closely to the pulse frequency.


Author(s):  
Bo Wang ◽  
Xunming Zhu ◽  
Hongchang Zhang ◽  
Hongtao Zhang ◽  
Jicai Feng

In this article, a novel hybrid welding process called plasma-TIG coupled arc welding was proposed to improve the efficiency and quality of welding by utilizing the full advantage of plasma and TIG welding processes. The two arcs of plasma and TIG were pulled into each other into one coupled arc under the effect of Lorentz force and plasma flow force during welding experiments. The arc behavior of coupled arc was studied by means of it’s arc profile, arc pressure and arc force conditions. The coupled arc pressure distribution measurements were performed. The effects of welding conditions on coupled arc pressure were evaluated and the maximum coupled arc pressure was improved compared with single-plasma arc and single-TIG arc. It was found that the maximum arc pressure was mainly determined by plasma arc current and plasma gas flow. According to the results, the proposed coupled arc welding process have both advantages of plasma arc and TIG method, and it has a broad application prospect.


2008 ◽  
Vol 41-42 ◽  
pp. 385-388
Author(s):  
Xiao Yun Zhu ◽  
Zhong Cheng Guo

Process and properties of pulse electrodeposited RE-Ni-W-P-SiC composite coatings were studied. The results show that the deposited rate by pulse current is larger than that by direct current; the deposited coatings by pulse current are better than that by direct current in corrosion resistance and microhardness. And the corrosion resistance of the coatings with pulse current is better than that of stainless steel (1Cr18Ni9Ti). The duty ratio and the pulse frequency in the process of electrodeposition have a large influence on the deposition rate, the composition and the properties of coatings. SEM measurement shows that the crystals with pulse current are smaller and the surface is smoother than that by direct current. It is beneficial to make crystalline grain finer by mixing rare earth.


Sign in / Sign up

Export Citation Format

Share Document