Manufacture and Industrial Application of Fe-Based Metallic Glasses

2012 ◽  
Vol 706-709 ◽  
pp. 1324-1330 ◽  
Author(s):  
S.W. Kim ◽  
J. Namkung ◽  
Ohjoon Kwon

Metallic glass alloys have been considered as attractive materials due to their excellent mechanical and magnetic properties. However, commercial application of metallic glasses has been limited not only because of high production cost, but because of low market demands. A critical production cost factor was raw material since ferrous metallic glasses were made from high purity electrolytic iron. An idea to reduce the cost was to utilize the raw materials which were taken directly from molten iron and steel manufactured at the existing steel plants. Investigations have been performed to find whether metallic glasses made of molten iron and steel demonstrated appropriate mechanical and magnetic performance. Pilot scale equipments were designed to produce amorphous metallic fibers and strips continuously under the atmospheric condition. Process conditions were optimized by controlling process variables such as alloying and nozzle design, feeding temperature, speed and so on. The glass formability was tested by XRD and DSC analysis. Possibilities of application of Fe-based metallic glasses to reinforced concrete were also evaluated. It was confirmed that a small addition of metallic glass fibers in concrete increased the mechanical performance compared to that of commercial concrete reinforced with steel wires. In addition, amorphous strips were manufactured to apply them to the transformer core. It has been demonstrated that the magnetic properties were equivalent to those of commercial products.

2008 ◽  
Vol 23 (6) ◽  
pp. 1543-1550 ◽  
Author(s):  
Q. Wang ◽  
C.L. Zhu ◽  
Y.H. Li ◽  
X. Cheng ◽  
W.R. Chen ◽  
...  

Bulk metallic glass (BMG) formations in Co- and Fe-based alloy systems are investigated by using our cluster line approach in combination with minor alloying principle. Basic ternary alloy compositions in Co–B–Si, Fe–B–Y, and Fe–B–Si systems are first determined by cluster lines defined by linking special binary clusters to third elements. Then the basic ternary alloys are further minor alloyed with 3 to 5 at.% Nb to improve glass-forming abilities (GFAs) and ϕ3 mm BMGs are formed in (Co8B3–Si)–Nb and (Fe8B3–Y)–Nb but not in (Fe8B3–Si)–Nb, TM8B3 (TM = Fe, Co) being the most compact binary cluster. The BMGs are expressed approximately with a unified simple composition formula: (TM8B3)1M1, M = (Si, Nb) or (Y, Nb). Finally, mutual Fe and Co substitutions further improve the GFAs as well as the soft magnetic properties, e.g., Is reaching 0.98 T and Hc < 6 A/m for the Co–Fe–B–Si–Nb BMGs. Using the (cluster)1(glue atom)1 model, a new ternary BMG Fe8B3Nb1 is obtained.


2017 ◽  
Vol 898 ◽  
pp. 703-708 ◽  
Author(s):  
Qi Kui Man ◽  
Ya Qiang Dong ◽  
Chun Tao Chang ◽  
Xin Min Wang ◽  
Run Wei Li

The thermal stability, glass-forming ability, soft-magnetic properties and mechanical properties of Co46Fe19+xB22.5Si5.5Nb7–x (x=0–2) bulk metallic glasses were investigated. The 5.5 at% Nb addition was found to be effective in approaching alloy to a eutectic point, resulting in an increase in glass-forming ability. By copper mold casting, bulk metallic glass rods with diameters up to 5 mm were produced. Except for high glass-forming ability, the bulk metallic glasses also exhibit good soft-magnetic properties, i.e., low coercive force of 1.34–2.14 A/m, high effective permeability at 1 kHz of 2.26–3.06×104, and high fractures strength (σf) of 4010–4460 MPa. This Co-based bulk metallic glass system with high strengths and excellent soft-magnetic properties is promising for future applications as a new functional material.


2014 ◽  
Vol 216 ◽  
pp. 45-48
Author(s):  
Dragoş Buzdugan ◽  
Cosmin Codrean ◽  
Viorel Aurel Şerban ◽  
Mircea Vodǎ

Development of Fe-based bulk metallic glasses (BMG) with good mechanical and soft magnetic properties has become a major objective in the materials science field. Bulk metallic glasses present an interesting combination of properties. They exhibit very high strength (both in tension and compression), large elastic elongation limit, high hardness, excellent corrosion resistance, and good soft magnetic properties. These properties makes them suitable for many applications like high resistant control cables, pressure vessels, micro-components, pressure sensors, microgears for motors, magnetic cores for power supplies and hard fibers in composite materials. Multi-component Fe60Co14Ga2P10B5Si3Al3C3bulk metallic glass was synthesized in rod form with a diameter of 1 mm by copper mould casting technique using raw industrial materials. The obtained alloy was analyzed by X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM) techniques, in order to determine the phase constituent, the thermal stability and the fracture surfaces of as-cast samples. The mechanical behaviour was investigated by microhardness and compression tests. The values recorded for hardness and fracture strength includes this alloy in the category of high resistant materials.


1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-27-Pr2-30
Author(s):  
L. Malkinski ◽  
A. Slawska-Waniewska ◽  
R. Zuberek ◽  
A. Wisniewski ◽  
H. K. Lachowicz ◽  
...  

Alloy Digest ◽  
1976 ◽  
Vol 25 (11) ◽  

Abstract METGLAS Alloy 2826 (Fe40Ni40P14B6) is a ferromagnetic, high permeability, nickel-iron metallic glass which, when appropriately annealed, yields a material similar to the higher nickel containing permalloys in magnetic properties. Alloy 2826 is a single phase, opaque metallic material with a glass-like structure obtained by a very rapid quench from the liquid state. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on forming and heat treating. Filing Code: Ni-235. Producer or source: Allied Chemical Corporation.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2815
Author(s):  
Yu Hang Yang ◽  
Jun Yi ◽  
Na Yang ◽  
Wen Liang ◽  
Hao Ran Huang ◽  
...  

Bulk metallic glasses have application potential in engineering structures due to their exceptional strength and fracture toughness. Their fatigue resistance is very important for the application as well. We report the tension-tension fatigue damage behavior of a Zr61Ti2Cu25Al12 bulk metallic glass, which has the highest fracture toughness among BMGs. The Zr61Ti2Cu25Al12 glass exhibits a tension-tension fatigue endurance limit of 195 MPa, which is higher than that of high-toughness steels. The fracture morphology of the specimens depends on the applied stress amplitude. We found flocks of shear bands, which were perpendicular to the loading direction, on the surface of the fatigue test specimens with stress amplitude higher than the fatigue limit of the glass. The fatigue cracking of the glass initiated from a shear band in a shear band flock. Our work demonstrated that the Zr61Ti2Cu25Al12 glass is a competitive structural material and shed light on improving the fatigue resistance of bulk metallic glasses.


2021 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Tianbing He ◽  
Nevaf Ciftci ◽  
Volker Uhlenwinkel ◽  
Sergio Scudino

The critical cooling rate necessary for glass formation via melt solidification poses inherent constraints on sample size using conventional casting techniques. This drawback can be overcome by pressure-assisted sintering of metallic glass powders at temperatures above the glass transition, where the material shows viscous-flow behavior. Partial crystallization during sintering usually exacerbates the inherent brittleness of metallic glasses and thus needs to be avoided. In order to achieve high density of the bulk specimens while avoiding (or minimizing) crystallization, the optimal combination between low viscosity and long incubation time for crystallization must be identified. Here, by carefully selecting the time–temperature window for powder consolidation, we synthesized highly dense Zr48Cu36Ag8Al8 bulk metallic glass (BMG) with mechanical properties comparable with its cast counterpart. The larger ZrCu-based BMG specimens fabricated in this work could then be post-processed by flash-annealing, offering the possibility to fabricate monolithic metallic glasses and glass–matrix composites with enhanced room-temperature plastic deformation.


Sign in / Sign up

Export Citation Format

Share Document