Electrical and Mechanical Properties of Ethylene Vinyl Acetate Based Composites

2012 ◽  
Vol 714 ◽  
pp. 193-199 ◽  
Author(s):  
Klaudia Czaniková ◽  
Zdenko Špitalský ◽  
Igor Krupa ◽  
Mária Omastová

In this study various composites based on the commercial ethylene vinyl acetate polymer matrix and multiwalled carbon nanotubes were prepared by casting from solution in the form of thick films. The degree of dispergation of carbon nanotubes in the polymer matrix was examined by scanning electron microscopy. Electrical conductivity and mechanical properties of those composites were investigated. It was observed that the electrical conductivity of composites increases with an increase of multiwalled carbon nanotubes content. The mechanical properties of composites were only slightly changed when compared with properties of neat ethylene vinyl acetate matrix.

2008 ◽  
Vol 47-50 ◽  
pp. 1109-1112
Author(s):  
Ye Seul Kim ◽  
Rira Jung ◽  
Hun Sik Kim ◽  
Hyoung Joon Jin

Polyurethane was used as adhesive due to high reactivity, high flexibility, and mechanical properties. Electrically conductive adhesives (ECAs) are an alternative to tin-lead solder in order to provide conductive paths between two electrical device components, which typically consist of a polymeric resin that contributes physical and mechanical properties, and conductive fillers. However, ECAs have low electrical conductivity and unstable network due to large contact points of the few micrometer-sized metal particles. In order to overcome these restrictions, multiwalled carbon nanotubes (MWCNTs) with high aspect ratio and smaller nanometer scale can be used as conductive fillers. In this study, ECAs were based on polyurethane filled with two kinds of fillers, raw MWCNTs and acid treated MWCNTs, respectively. Electrical conductivity was measured by using four-point probe. Morphology and dispersibility of fillers were observed by scanning electron microscopy and transmission electron microscopy.


2014 ◽  
Vol 983 ◽  
pp. 105-109 ◽  
Author(s):  
Li Jun Wang ◽  
Jian Hui Qiu ◽  
Eiichi Sakai ◽  
Xiao Wei Wei

Multiwalled carbon nanotubes/Polycarbonate (MWCNTs/PC) nanocomposites were successfully prepared by melting mixing. With the injection speed and temperature changed, different MWCNTs contents MWCNTs/ PC composites were prepared. The electrical conductivity of nanocomposites was compared with different injection speeds and injection temperatures. It was found that the electrical conductivity of the MWCNTs/PC nanocomposites was decreased with MWNTs content increasing, and were both affected by the injection speed and temperature. Besides, at the vicinity of the surface of samples, the resistivity of MWCNTs/PC nanocomposites was the maximum; the closer to the samples inner, the resistivity was smaller and more stabilized. The microstructure and morphology of composites were analyzed by Scanning Electron Microscopy (SEM) techniques, and the MWCNTs’ dispersion in PC matrix and the interfacial interaction between MWCNTs and PC were analyzed.


2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document