Combined Physical Modeling and Monte Carlo Simulation of Recrystallization of Hot Deformed AA7020 Aluminum Alloy

2012 ◽  
Vol 715-716 ◽  
pp. 480-485 ◽  
Author(s):  
Ali Reza Eivani ◽  
Jie Zhou ◽  
Jurek Duczczyk

In this research, recrystallization of AA7020 aluminum alloy after hot compression testing was predicted using a framework being a combination of physical modeling and Monte Carlo simulation. Stored energy was calculated as a function of subgrain size related to the Zener Hollomon parameter. The as-deformed grain structure was mapped into the Monte Carlo simulation from experimental results. Calculated stored energy was assigned to the mapped structure, considering the length scale of the simulation. Results were validated by comparing the microstructures obtained from the model predictions with those from experimental results and a reasonable agreement was reached. The predicted grain size was found to be 15 % smaller than the experimental values. Predicted fractions recrystallized showed a similar trend to the experimental results. However, a discrepancy between the model predictions and experimental results in terms of recrystallization kinetics was found, which was attributed to neglecting the effect of subgrain growth and resulting reduction of the stored energy during recovery on the recrystallization kinetics in the present simulation.

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
M. S. Mayeed ◽  
T. Kato

Applying the reptation algorithm to a simplified perfluoropolyether Z off-lattice polymer model an NVT Monte Carlo simulation has been performed. Bulk condition has been simulated first to compare the average radius of gyration with the bulk experimental results. Then the model is tested for its ability to describe dynamics. After this, it is applied to observe the replenishment of nanoscale ultrathin liquid films on solid flat carbon surfaces. The replenishment rate for trenches of different widths (8, 12, and 16 nms for several molecular weights) between two films of perfluoropolyether Z from the Monte Carlo simulation is compared to that obtained solving the diffusion equation using the experimental diffusion coefficients of Ma et al. (1999), with room condition in both cases. Replenishment per Monte Carlo cycle seems to be a constant multiple of replenishment per second at least up to 2 nm replenished film thickness of the trenches over the carbon surface. Considerable good agreement has been achieved here between the experimental results and the dynamics of molecules using reptation moves in the ultrathin liquid films on solid surfaces.


2007 ◽  
Vol 558-559 ◽  
pp. 1057-1061 ◽  
Author(s):  
Abhijit P. Brahme ◽  
Joseph M. Fridy ◽  
Anthony D. Rollett

A model has been constructed for the microstructural evolution that occurs during the annealing of aluminum alloys. Geometric and crystallographic observations from two orthogonal sections through a polycrystal using automated Electron Back-Scatter Diffraction (EBSD) were used as an input to the computer simulations to create a statistically representative threedimensional model. The microstructure is generated using a voxel-based tessellation technique. Assignment of orientations to the grains is controlled to ensure that both texture and nearest neighbor relationships match the observed distributions. The microstructures thus obtained are allowed to evolve using a Monte-Carlo simulation. Anisotropic grain boundary properties are used in the simulations. Nucleation is done in accordance with experimental observations on the likelihood of occurrences in particular neighborhoods. We will present the effect of temperature on the model predictions.


2011 ◽  
Vol 25 (28) ◽  
pp. 2171-2181 ◽  
Author(s):  
OMAR EL BOUNAGUI ◽  
HASSANE ERRAMLI

A Monte Carlo simulation program was developed to calculate the variations of the channeled to random electronic stopping powers of He + in an energy 4 MeV in silicon single crystal along the major 〈100〉, 〈110〉 and 〈111〉 axes. This paper discusses both simulation and experimental results that shed light on the contribution of these factors. Results obtained by our simulation are in good agreement with the experimental results.


1989 ◽  
Vol 211-212 ◽  
pp. 797-803 ◽  
Author(s):  
J. Ferrón ◽  
J.M. Gallego ◽  
A. Cebollada ◽  
J.J. De Miguel ◽  
S. Ferrer

2010 ◽  
Vol 654-656 ◽  
pp. 1486-1491 ◽  
Author(s):  
Y.B. Chun ◽  
S. Lee Semiatin ◽  
Sun Keun Hwang

The recrystallization behavior of cold-rolled, commercial-purity titanium was studied experimentally and with Monte-Carlo (MC) modeling. Utilization of EBSD-OIM as input for MC modeling resulted in realistic predictions of recrystallization kinetics, microstructure and texture, which were in good agreement with experimental results. MC modeling of recrystallization kinetics predicted that the non-uniform stored energy distribution, heterogeneous nucleation of recrystallization and recovery in combination leads to a negative deviation from linear JMAK kinetics. It was found that concurrent recovery that takes place during recrystallization is an important process that controls both the overall recrystallization kinetics and the deviation of linear JMAK kinetics. On the other hand, the non-uniformly distributed stored energy itself has little effect on the negative deviation from JMAK kinetics but intensifies the deviation when heterogeneous nucleation is combined. Modeling results also revealed that heterogeneous nucleation of recrystallized grains and their early impingement in local areas of high deformation are essential for producing a log-normal distribution of grain size and a typical recrystallization texture of rolled titanium.


Sign in / Sign up

Export Citation Format

Share Document