Preparation of Al2TiO5-Al2O3 and Al2TiO5-Al2O3-TiO2 Ceramics by High-Energy Ball Milling and Sintering

2012 ◽  
Vol 727-728 ◽  
pp. 1193-1198 ◽  
Author(s):  
Pietro Carelli Reis de Oliveira Caltabiano ◽  
Marisa Aparecida de Souza ◽  
Rodrigo Fernando Costa Marques ◽  
Maria Gabriela Nogueira Campos ◽  
Luis Rogério de Oliveira Hein ◽  
...  

The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500°C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500°C for 4h, which presented the formation of Al2TiO5.

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1621
Author(s):  
Jesus Rios ◽  
Alex Restrepo ◽  
Alejandro Zuleta ◽  
Francisco Bolívar ◽  
Juan Castaño ◽  
...  

Commercial powders of pure magnesium were processed by high-energy ball milling. The microstructural and morphological evolution of the powders was studied using scanning electron microscopy (SEM), energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). From the results obtained, it was determined that the ball size is the most influential milling parameter. This was because balls of 1 mm diameter were used after a previous stage of milling with larger balls (i.e., 10 and 3 mm). The powder particles presented an unusual morphology with respect to those observed in the Mg-milling literature and recrystallization phenomena. Moreover, the result strongly varied depending on the ball-to-powder weight ratio (BPR) used during the milling process.


2014 ◽  
Vol 87 ◽  
pp. 157-161 ◽  
Author(s):  
Alfeu Saraiva Ramos ◽  
Marisa Aparecida de Souza ◽  
Roberto de Oliveira Magnago ◽  
Claudinei dos Santos ◽  
Camila Aparecida Araujo da Silva ◽  
...  

In this work, the preparation of Al2O3-TiO2 ceramics by high-energy ball milling varying the molar fraction in 1:1 and 3:1 was investigated. The powder mixtures were processed in a planetary mill at 250rpm and a ball-to-powder weight ratio of 5:1, for 120min. Compacts were obtained by cold pressing at 100MPa. These specimens were heated at 1000◦C for 30min to promote the water evaporation, and subsequently sintered at 1500◦C for 240min. Samples were characterized by relative density and X-ray diffraction. Hardness and fracture toughness were determined by Vickers Indentation Method. The crystallite sizes were lower than 420 and 560Å in Al2O3-TiO2 and 3Al2O3-TiO2 powders, respectively. After sintering, XRD analysis indicates Al2TiO5 and Al2O3/Al2TiO5 as major crystalline phases for Al2O3-TiO2 and 3Al2O3-TiO2 compositions, respectively. The relative density of the Al2O3-TiO2 ceramics was higher than 90% in both compositions. However, hardness and fracture toughness results of 10.7GPa or 10.5GPa and 3.2MPa.m1/2 or 2.6MPa.m1/2 for Al2O3-TiO2 and 3Al2O3-TiO2 mixtures respectively, indicates that microstructure duplex composed by Al2O3 and Al2TiO5 grains lead to improvement of toughness of these ceramics.


2012 ◽  
Vol 727-728 ◽  
pp. 233-238
Author(s):  
Gilda Maria Cortez Pereira ◽  
Marisa Aparecida de Souza ◽  
Tomaz Manabu Hashimoto ◽  
Vinicius André Rodrigues Henriques ◽  
Alfeu Saraiva Ramos

This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900°C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.


2014 ◽  
Vol 802 ◽  
pp. 20-24 ◽  
Author(s):  
Lucas Moreira Ferreira ◽  
Luciano Braga Alkmin ◽  
Érika C.T. Ramos ◽  
Carlos Angelo Nunes ◽  
Alfeu Saraiva Ramos

The milling process of elemental Ti-2Ta-22Si-11B and Ti-6Ta-22Si-11B (at-%) powder mixtures were performed in a planetary Fritsch P-5 ball mill using stainless steel vials (225 mL) and hardened steel balls (19 mm diameter). Ball-to-powder weight ratio of 10:1 and a rotary speed of 300 rpm were adopted, varying the milling time. Wet milling (isopropyl alcohol) for 20 more minutes was used to increase the yield powder in to the vial. Following the Ti-Ta-Si-B powders milled for 600 min were heat-treated at 1100°C for 1 h in order to obtain the equilibrium structures. The milled powders and heat-treated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. Supersaturated Ti solid solutions were formed during ball milling of Ti-Ta-Si-B powders while that the Ti5Si3 phase was formed after milling for 620 min of the Ta-richer powder mixture only. The particles sizes were initially increased during the initial milling times, and the wet milling provided the yield powder into the vials. A large amount of pores was found in both the sintered samples which presented the formation of the TiSS,(ss-solid solution) Ti6Si2B and TiB.


2010 ◽  
Vol 150-151 ◽  
pp. 1163-1166 ◽  
Author(s):  
Xiao Fei Wang ◽  
Xiao Lan Cai

CNT-reinforced aluminum matrix composites was produced by high-energy ball milling, the effect of rotary speed and milling time on the particle size distribution,the density and hardness of CNT-aluminum matrix composites were studied,it was observed that the rotary speed and milling time have an important effect on the mechanical properties of the CNT-aluminum matrix composites.


2006 ◽  
Vol 168 (1-3) ◽  
pp. 1057-1063 ◽  
Author(s):  
Ligia E. Zamora ◽  
G. A. Perez Alcazar ◽  
J. M. Greneche ◽  
S. Suriñach

2007 ◽  
Vol 353-358 ◽  
pp. 1625-1628 ◽  
Author(s):  
Gen Shun Ji ◽  
Qin Ma ◽  
Tie Ming Guo ◽  
Qi Zhou ◽  
Jian Gang Jia ◽  
...  

The high energy ball milling of Ni-50 atom % Si elemental powder mixtures was carried out using a planetary mill. X-ray diffraction (XRD) was used to identify the phase evolutions during the high energy ball milling period. The microstructure morphology of the powders milled different time was determined by field emission scanning electron microscope (FESEM). The beginning time of mechanical alloying was determined by back scattered electrons (BSE) images. The XRD patterns showed that the nickel peaks intensity and the silicon peaks intensity obviously decreased with milling time increased to 1 hour. BSE images revealed that nickel and silicon powders were not blended uniformly for 1 hour of milling. It was found that NiSi formed as the milling time increased to 5 hours, simultaneously, the nickel peaks and the silicon peaks almost disappeared. That means the obvious mechanical alloying started from 5 hours of milling. BSE images agreed with the result analyzed from XRD patterns. With the milling time further increased from 10 to 75 hours, the NiSi peaks decreased gradually, at the same time, the Ni2Si peaks appeared and then increased gradually.


2013 ◽  
Vol 669 ◽  
pp. 149-153
Author(s):  
Xiao Lan Cai ◽  
Zheng Li ◽  
Qing Jun Wang

High energy ball milling was used to preparation SiC/Al composites flakes. The research found the milling parameter of high energy milling was the ball/powder ration is 20:1, the rotary speed is 800 r/min, the milling time is 100min.Also researched the molding process of SiC/Al composites, the change of grain size and the weight fraction of the SiC, The research also found the mechanical properties of SiC/Al composites affected by the molding process. It was found that to reduce particle size and increasing of weight fraction of SiC, tensile strength of the SiC/Al composites increased. When the weight fraction of SiC in the SiC/Al composites is about 16%, the mechanical properties of SiC/Al composites about the hardness and tensile strength also get the high-point, the hardness and tensile strength is about 95HB and 248MPa.


2011 ◽  
Vol 694 ◽  
pp. 337-340
Author(s):  
Xiao Lan Cai ◽  
Xiao Fei Wang

This paper using high energy ball milling(HEM), researched the technology of preparation of Al compound material reinforced by CNT. Researched the different milling time, rotary speed, amount of CNT and sinter technology on properties of hardness and density. Preparation the Al-CNT at milling time about 30 to 100 min, rotational speed is about 300-600/rpm.the wt% of CNT is 0-5%, Analyzed the XRD patterns、SEM and STM micrograph, the results showed the Al material could be reinforced by CNT using HEM. the hardness of Al-CNT is 75 HB and the density is 2.65 g/cm3 when milling 90 min and CNT 3%.


2006 ◽  
Vol 510-511 ◽  
pp. 698-701
Author(s):  
Pyuck Pa Choi ◽  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Dae Hwan Kwon

Mechanically induced crystallization of an amorphous Fe90Zr10 alloy was studied by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Under high-energy ball-milling in an AGO-2 mill, melt-spun Fe90Zr10 ribbons undergo crystallization into BCC α- Fe(Zr). Zr atoms are found to be solved in the Fe(Zr) grains up to a maximum supersaturation of about 3.5 at.% Zr, where it can be presumed that the remaining Zr atoms are segregated in the grainboundaries. The decomposition degree of the amorphous phase increases with increasing milling time and intensity. It is proposed that the observed crystallization is deformation-induced and rather not attribute to local temperature rises during ball-collisions.


Sign in / Sign up

Export Citation Format

Share Document