Blue Luminescent of ZnO:Zn Nanocrystal Prepared by One Step Spray Pyrolysis Method

2013 ◽  
Vol 737 ◽  
pp. 20-27 ◽  
Author(s):  
Camellia Panatarani ◽  
Dunden Gilang Muharam ◽  
Bambang Mukti Wibawa ◽  
I Made Joni

A blue luminescent of ZnO:Zn nanocrystal has been successfully prepared by one step spray pyrolysis method without reducing gas atmosphere. Zinc acetate dihydrate aqueous solutions (0.05 M) were atomized by ultrasonic atomizer. The atomizer used an air as carrier gas with 1, 3 and 5 L/min flowrate. The tubular reactor was set at 500, 600 and 700oC. As prepared samples were characterized by means of x-ray diffraction spectroscopy and scanning electron microscope-energy dispersive x-ray spectroscopy (SEM-EDS). The crystal size of as prepared particles calculated by Scherrer’s equation give 10-20 nm. The luminescent properties of as prepared particles were measured using spectrofluorophotometer. The highest photoluminescent intensity of particles irradiated with excited wavelength of 250 nm was obtained from samples prepared using 5 L/min carrier gas with temperature of tubular reactor 700oC. High intensity of blue luminescent was obtained due to oxygen vacancy in ZnO:Zn.

2018 ◽  
Vol 1 (1) ◽  
pp. 57-66
Author(s):  
Fenfen Fenda Florena ◽  
◽  
Dwindra Wilham Maulana ◽  
Ferry Faizal ◽  
Bambang Mukti Wibawa ◽  
...  

Spherical particles of Zn doped MgO were prepared by one-step spray pyrolysis method. The crystalline nature and particle size of the samples were characterized by X-ray diffraction analysis (XRD). The morphology of samples was studied by scanning electron microscope (SEM) and the presence of Zn in the sample was confirmed by energy dispersive X-ray analysis (EDX). The optical properties of the samples were investigated using photoluminescence spectroscopy (PL) analysis to obtain excitation and emission spectra of the samples. Results indicated that the doped MgO particles exhibited a cubic structure without hexagonal wurtzite structure as the Zn concentrations were increased. Spherical shape and porous particles are found with increasing of doping concentration. The optical band gap of MgO altered with the addition of doping concentration. A considerable redshift of about ~0.08 – 0.13 eV in the excitation spectra of 2.22 eV emission band was revealed in Zn doped MgO samples. It was highlighted that Zn doped MgO prepared by the spray pyrolysis generated emission at UV-Vis wavelength required for many applications.


2020 ◽  
Vol 853 ◽  
pp. 56-60
Author(s):  
Alexa Gaona-Esquivel ◽  
Diana S. Hernández-Manzo ◽  
Perla J. Sánchez-Trujillo ◽  
Oscar E. Cigarroa-Mayorga ◽  
Miguel Meléndez-Lira

In this work, the synthesis of manganese oxide nanoparticles was achieved by one-step spray pyrolysis method. The nanoparticles were synthesized just from MnCl2 aqueous solution. The solution was nebulized to a Si substrate placed at 400 °C for 1, 5 10 and 20 min and transported at a 0.1 L /min rate in a Nitrogen flux. The X-ray diffraction confirms tetragonal Mn3O4 as the unique phase in the whole sample. The scanning electron microscopy images proved the achievement of irregular nanoparticles with an average diameter of 280 nm experimentally determined by dynamic light scattering. Energy dispersive X-ray and Raman spectroscopy confirmed that the nanoparticles were obtained with Mn3O4 single-phase and the employed methodology prevented any contamination. The nanoparticles proved to induce temperature enhancement on artificial breast tissue by exposition to microwave radiation by achieving an increase in temperature around 8 %.


Author(s):  
Fenfen Fenda Florena ◽  
◽  
Dwindra Wilham Maulana ◽  
Ferry Faizal ◽  
Bambang Mukti Wibawa ◽  
...  

Spherical particles of Zn doped MgO were prepared by one-step spray pyrolysis method. The crystalline nature and particle size of the samples were characterized by X-ray diffraction analysis (XRD). The morphology of samples was studied by scanning electron microscope (SEM) and the presence of Zn in the sample was confirmed by energy dispersive X-ray analysis (EDX). The optical properties of the samples were investigated using photoluminescence spectroscopy (PL) analysis to obtain excitation and emission spectra of the samples. Results indicated that the doped MgO particles exhibited a cubic structure without hexagonal wurtzite structure as the Zn concentrations were increased. Spherical shape and porous particles are found with increasing of doping concentration. The optical band gap of MgO altered with the addition of doping concentration. A considerable redshift of about ~0.08 – 0.13 eV in the excitation spectra of 2.22 eV emission band was revealed in Zn doped MgO samples. It was highlighted that Zn doped MgO prepared by the spray pyrolysis generated emission at UV-Vis wavelength required for many applications.


2014 ◽  
Vol 129 ◽  
pp. 101-103 ◽  
Author(s):  
Xiuyun Zhang ◽  
Huarui Xu ◽  
Yunyun Zhao ◽  
Guisheng Zhu ◽  
Aibing Yu

2013 ◽  
Vol 652-654 ◽  
pp. 563-566
Author(s):  
Xia Wang ◽  
Chang Cheng Liu ◽  
Zhen Hua Liang ◽  
Gui Hua Peng ◽  
Xiao Bao Han

Hollow spherical CaMoO4:Eu3+, Li+red phosphors have been successfully synthesized by spray pyrolysis method. The crystalline phase, morphology and luminescent properties of the obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence emission spectra (PL). The XRD results demonstrated that all the diffraction peaks of the samples can be well indexed to the tetragonal phase of CaMoO4. The SEM images showed that the particles were composed of hollow spheres, whose diameters are about 1.4 μm. The as-prepared CaMoO4:Eu3+, Li+hollow spheres show a strong red emission corresponding to the5D0-7F2transition of the Eu3+ ions under ultraviolet light.


1987 ◽  
Vol 99 ◽  
Author(s):  
Maki Kawai ◽  
Tomoji Kawai ◽  
Hiromi Masuhira ◽  
Makoto Takahasi

ABSTRACTAn oriented film of YBa2Cu3O7−x superconductor was formed by a spray pyrolysis method. The temperature dependence of resistance showed the Tc-onset at 95K and Tc-zero at 83K with the film on a cubic zirconia single crystal surface. The X-ray diffraction pattern showed that the structure of the film was pure orthorhombic phase. Effect of the substrates and the modification of the substrates surface to form superconductive films are presented.


Author(s):  
Xu Li ◽  
Yinglin Wang ◽  
Pengfei Cheng ◽  
Yanming Liu ◽  
Zhaohui Lei ◽  
...  

In2O3 doped with Ce element was synthesized by a simple one-step spray pyrolysis method. In this method, NaCl was used as high-temperature auxiliary and template to synthesize multicore-shell structure sample....


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 716
Author(s):  
Elif Emil Kaya ◽  
Ozan Kaya ◽  
Srecko Stopic ◽  
Sebahattin Gürmen ◽  
Bernd Friedrich

Neodymium iron boron magnets (NdFeB) play a critical role in various technological applications due to their outstanding magnetic properties, such as high maximum energy product, high remanence and high coercivity. Production of NdFeB is expected to rise significantly in the coming years, for this reason, demand for the rare earth elements (REE) will not only remain high but it also will increase even more. The recovery of rare earth elements has become essential to satisfy this demand in recent years. In the present study rare earth elements recovery from NdFeB magnets as new promising process flowsheet is proposed as follows; (1) acid baking process is performed to decompose the NdFeB magnet to increase in the extraction efficiency for Nd, Pr, and Dy. (2) Iron was removed from the leach liquor during hydrolysis. (3) The production of REE-oxide from leach liquor using ultrasonic spray pyrolysis method. Recovery of mixed REE-oxide from NdFeB magnets via ultrasonic spray pyrolysis method between 700 °C and 1000 °C is a new innovative step in comparison to traditional combination of precipitation with sodium carbonate and thermal decomposition of rare earth carbonate at 850 °C. The synthesized mixed REE- oxide powders were characterized by X-ray diffraction analysis (XRD). Morphological properties and phase content of mixed REE- oxide were revealed by scanning electron microscopy (SEM) and Energy-dispersive X-ray (EDX) analysis. To obtain the size and particle size distribution of REE-oxide, a search algorithm based on an image-processing technique was executed in MATLAB. The obtained particles are spherical with sizes between 362 and 540 nm. The experimental values of the particle sizes of REE- oxide were compared with theoretically predicted ones.


Sign in / Sign up

Export Citation Format

Share Document