The Study of Life Cycle Assessment of Propylene Carbonate Manufacturing

2013 ◽  
Vol 743-744 ◽  
pp. 812-816
Author(s):  
Xian Ce Meng ◽  
Chen Li ◽  
Zhi Hong Wang ◽  
Xian Zheng Gong ◽  
Ming Hui Fang ◽  
...  

This study attempted to estimate the environmental performance of poly (propylene carbonate, PPC) in the whole life cycle. The life cycle is from raw materials, energy acquisition, manufacture, transportation, to the final disposal, sequentially. The environment impacts of these phases are assessed by the method of Life Cycle Assessment (LCA) to identify key aspects of environmental loads involving global warming, non-renewable resource consumption, and acidification effects and so on. Moreover, a comparative study due to manufacturing of PPC in its whole life cycle was taken to reveal which stage would make the most environmental load.

BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 9132-9145
Author(s):  
Xiang Yu ◽  
Lizhen Zeng ◽  
Guofang Zhang ◽  
Hankun Wang

Bamboo floorings are the most important industrial products in the bamboo sector. With the aim of providing a useful guide for the development of bamboo floorings, this study quantitatively assessed the environmental impacts of the two primary types of bamboo floorings, laminated flooring and scrimber flooring, using life cycle assessment (LCA) software SimaPro. The purpose of this study was to find out which type of bamboo flooring is more environmentally friendly through quantitatively analyzing the input and output of materials and energy during the whole life cycle of the two types of flooring products. The present study demonstrated that the majority of the environmental burdens were associated with the process of bamboo strip production for bamboo laminated flooring (59.3%), and the process of panel processing for bamboo scrimber floorings (56.9%). In terms of environmental loads, bamboo laminated flooring was considered more sustainable than bamboo scrimber flooring, as the total environmental loads of bamboo scrimber flooring was approximately 1.6 times that of bamboo laminated flooring.


2021 ◽  
Vol 7 (1) ◽  
pp. 24-52
Author(s):  
Peng Liu ◽  
◽  
Bo Zhang ◽  
Changyan Yang ◽  
Yu Gong ◽  
...  

The electrified cleaning agent requires a moderate volatilization rate, low ozone-depleting substances value, non-flammable, non-explosive and other characteristics. This study performed a whole life cycle assessment on a hydrocarbon-based electrified cleaning agent. The life cycle model is cradle-to-grave, and the background data sets include power grid, transportation, high-density polyethylene, chemicals, etc. The analysis shows that the global warming potential (GWP) of the life cycle of 1 kg of electrified cleaning agent is 2.08 kg CO2 eq, acidification potential (AP) is 9.49E-03 kg SO2 eq, eutrophication potential (EP) is 1.18E-03 kg PO43-eq, respirable inorganic matter (RI) is 2.13E- 03 kg PM2.5 eq, ozone depletion potential (ODP) is 4.91E-05 kg CFC-11 eq, photochemical ozone formation potential (POFP) is 2.89E-02 kg NMVOC eq, ionizing radiation-human health potential (IRP) is 3.16E-02 kg U235 eq, ecotoxicity (ET) is 2.69E-01 CTUe, human toxicity-carcinogenic (HT-cancer) is 4.32E-08 CTUh, and human toxicity-non-carcinogenic (HT-non cancer) is 2.31E-07 CTUh. The uncertainty of the results is between 3.46-9.95%. The four processes of tetrachloroethylene production, D40 solvent oil production, tetrachloroethylene environmental discharge during product use, and electricity usage during product disposal have substantial effects on each LCA indicator, so they are the focus of process improvement. Changes in power consumption during production and transportation distance of raw materials have little effect on total carbon emissions. Compared with the production process of single-solvent electrified cleaning agent tetrachloroethylene and n-bromopropane, the production of the electrified cleaning agent developed in this study has its own advantages in terms of carbon footprint and other environmental impact indicators. Carbon emissions mainly come from the power consumption of each process, natural gas production and combustion, and other energy materials for heating. It is recommended to use renewable raw materials instead of crude oil to obtain carbon credits based on geographical advantages, and try to use production processes with lower carbon emissions, while the exhaust gas from the traditional production process is strictly absorbed and purified before being discharged.


2005 ◽  
Vol 59 (5-6) ◽  
pp. 132-140 ◽  
Author(s):  
Jelena Kesic ◽  
Dejan Skala

Antifreeze based on ethylene glycol is a commonly used commercial product The classification of ethylene glycol as a toxic material increased the disposal costs for used antifreeze and life cycle assessment became a necessity. Life Cycle Assessment (LCA) considers the identification and quantification of raw materials and energy inputs and waste outputs during the whole life cycle of the analyzed product. The objectives of LCA are the evaluation of impacts on the environment and improvements of processes in order to reduce and/or eliminate waste. LCA is conducted through a mathematical model derived from mass and energy balances of all the processes included in the life cycle. In all energy processes the part of energy that can be transformed into some other kind of energy is called exergy. The concept of exergy considers the quality of different types of energy and the quality of different materials. It is also a connection between energy and mass transformations. The whole life cycle can be described by the value of the total loss of exergy. The physical meaning of this value is the loss of material and energy that can be used. The results of LCA are very useful for the analyzed products and processes and for the determined conditions under which the analysis was conducted. The results of this study indicate that recycling is the most satisfactory solution for the treatment of used antifreeze regarding material and energy consumption but the re-use of antifreeze should not be neglected as a solution.


Author(s):  
Zhenghui Sha ◽  
Gaurav Ameta

Nowadays, almost every family has one electric rice cooker, thus making electric rice cooker one of the most popular household appliance in our society. If the product is not designed ecologically and is used heavily, then the product may lead to large ecological impact to our environment. To assess a product’s environmental impacts, Life Cycle Assessment (LCA) methodology is utilized. However, to the best of the authors’ knowledge, for one such technology (electric rice cooker), no complete LCA studies have existed by far. Therefore, the question about the electric rice cooker’s environmental performance is still open. This paper presents an LCA study for the complete life cycle of an electric rice cooker with the power 500Watts as the functional unit. In order to conduct LCA study, the whole life cycle of electric rice cooker was divided into four primary phases: raw materials acquisition, product manufacturing, product utilization and final disposal. To facilitate the data collection and LCA implementation, the whole life cycle system was classified as two subsystems — background system and foreground system. Based on the proposed method, primary data and environmental impact calculation was aided by Simapro 7.2 software. In the light of the Ecoindicator-99 methodology, eleven impact categories (Carcinogens, Resp. organics, Resp. inorganics, Climate change, Radiation, Ozone layer, Ecotoxicity, Acidification, Land use, Minerals, Fossil fuels) were used for the classification and characterization of the life cycle impact assessment. In this paper, the LCA study was found as a very helpful tool to define ecodesign measures for this product. Several measures are suggested to the manufacturers to implement the ecodesign in the future: 1) Use recyclable plastics in the minor parts and hidden components, such as switcher, handle etc.; 2) Reduce the number of different materials in packaging; 3) Avoid incompatible plastics during recycling; 4) Minimize the volume of the heat plate on the premise of meeting the rated heating power.


Author(s):  
Valeria Arosio ◽  
Chiara Moletti ◽  
Giovanni Dotelli

Hempcrete is a natural building material obtained mixing hemp shives (i.e., the woody core of the hemp plant) with a lime-based binder and water. Hempcrete as construction material is gaining increasing interest as the EU aims to achieve net zero emissions by 2050. This material has, in fact, the ability to uptake carbon dioxide from air (i.e., via carbonation) and to store carbon for long time. The goal of the present work is to deeper analyze the environmental profile of hempcrete, in order to assess its potentials in reducing emissions of construction sector. Specifically, Life Cycle Assessment (LCA) of a non-load-bearing wall made of hempcrete blocks is carried on. The analysis encompasses the whole life cycle from the extraction of raw materials to the end of the service life. The analyzed blocks are produced by an Italian company. Only aerial lime is used as binder, microorganisms are added to the blocks to accelerate carbonation. The impact on climate change is assessed through the GWP 100 method proposed by IPCC. Preliminary results reveal a nearly neutral carbon budget.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 873
Author(s):  
Francisco Javier Flor-Montalvo ◽  
Agustín Sánchez-Toledo Ledesma ◽  
Eduardo Martínez Cámara ◽  
Emilio Jiménez-Macías ◽  
Jorge Luis García-Alcaraz ◽  
...  

Natural stoppers are a magnificent closure for the production of aging wines and unique wines, whose application is limited by the availability of raw materials and more specifically of cork sheets of different thickness and quality. The growing demand for quality wine bottle closures leads to the search for alternative stopper production. The two-piece stopper is an alternative since it uses non-usable plates in a conventional way for the production of quality caps. The present study has analyzed the impact of the manufacture of these two-piece stoppers using different methodologies and for different dimensions by developing an LCA (Life Cycle Assessment), concluding that the process phases of the plate, its boiling, and its stabilization, are the phases with the greatest impact. Likewise, it is detected that the impacts in all phases are relatively similar (for one kg of net cork produced), although the volumetric difference between these stoppers represents a significant difference in impacts for each unit produced.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3365
Author(s):  
Justyna Zygmuntowicz ◽  
Magdalena Gizowska ◽  
Justyna Tomaszewska ◽  
Paulina Piotrkiewicz ◽  
Radosław Żurowski ◽  
...  

This work focuses on research on obtaining and characterizing Al2O3/ZrO2 materials formed via slip casting method. The main emphasis in the research was placed on environmental aspects and those related to the practical use of ceramic materials. The goal was to analyze the environmental loads associated with the manufacturing of Al2O3/ZrO2 composites, as well as to determine the coefficient of thermal expansion of the obtained materials, classified as technical ceramics. This parameter is crucial in terms of their practical applications in high-temperature working conditions, e.g., as parts of industrial machines. The study reports on the four series of Al2O3/ZrO2 materials differing in the volume content of ZrO2. The sintering process was preceded by thermogravimetric measurements. The fabricated and sintered materials were characterized by dilatometric study, scanning electron microscopy, X-ray diffraction, and stereological analysis. Further, life cycle assessment was supplied. Based on dilatometric tests, it was observed that Al2O3/ZrO2 composites show a higher coefficient of thermal expansion than that resulting from the content of individual phases. The results of the life cycle analysis showed that the environmental loads (carbon footprint) resulting from the acquisition and processing of raw materials necessary for the production of sinters from Al2O3 and ZrO2 are comparable to those associated with the production of plastic products such as polypropylene or polyvinyl chloride.


2021 ◽  
pp. 102978
Author(s):  
Yovanna Elena Valencia-Barba ◽  
José Manuel Gómez-Soberón ◽  
María Consolación Gómez-Soberón ◽  
María Neftalí Rojas-Valencia

Sign in / Sign up

Export Citation Format

Share Document