Microstructure of CB2 Steel before and after Long-Term Creep Tests

2014 ◽  
Vol 782 ◽  
pp. 311-318 ◽  
Author(s):  
Dagmar Jandová ◽  
Josef Kasl ◽  
Eva Chvostová

A pilot 4t valve made of CB2 steel was produced in the frame of COST Action 522. Specimens for long-term creep tests were taken from positions with a wall thickness of 130 mm and 85 mm. Creep testing was carried out at 650°C and a stress range from 50 MPa to 120 MPa. The longest times to rupture of specimens in individual positions were 67,857 h and 82,649 h respectively. Ruptured samples underwent fractographic and microstructural analyses. Quantitative evaluation of substructure was performed using SEM and TEM. Microstructure consisted of tempered martensite with primary boron and niobium nitrides and secondary particles of M23C6 carbide, Laves phase and vanadium nitride. During creep tests coarsening of Laves phase occurred and new particles nucleated on the site of M23C6 carbides, NbN or BN nitrides. Significant increase in volume fraction of Laves phase was detected in specimens ruptured up to 20,000 hours in comparison to as received conditions; any further increase was found out after longer creep exposures. Concerning to M23C6 carbides any important changes were found out in their size and distribution. Density of fine MX nitride was higher after creep tests than in as received conditions with the exception of two longest creep exposures. Several Z-phase particles were also identified after these two exposures.

Author(s):  
Leonardo Cipolla ◽  
Augusto Di Gianfrancesco ◽  
Dario Venditti ◽  
Giuseppe Cumino ◽  
Stefano Caminada

In the last two decades the service pressure and temperature of components for advanced power plants increased significantly and more severe requirements on strength, corrosion resistance and creep properties were imposed on high temperature steels. To comply with these requirements, several new 9–12%Cr martensitic steels were developed and some of them, such as ASTM Grades 91, 911 and 92 are currently used in new high efficiency Ultra Super Critical power plants. The initial evaluation of their creep strength above 550°C was defined with relatively short term tests, but the long experience in service and long term creep laboratory tests showed that the original estimation of creep strength values were not reliable and a reduction of the creep resistance occurred at long service time. Short creep tests (elaborated with time-temperature-parameter methods, i.e. Larson Miller equation) usually give an over-estimation of the long-term creep properties of 9%Cr steels. The results of the creep assessments of Grade 92 (Japanese NF616) are an example of the significant lowering of the creep properties: the creep resistance of this grade was initially evaluated in 600°C/160MPa/105h by means extrapolation of short creep tests, within 103 hours; recently the creep strength was reduced down to 113MPa (ECCC assessment, 2005). Moreover some premature failures of Japanese Grade PI 22 took place and similar problems appeared on other 12%Cr steels. The lowering of creep strength in 9–12%Cr steels at long times is a consequence of the evolution of their microstructure during high temperature service. The causes of this phenomenon in Grades 91, 911 and 92 are examined in this article, paying special attention to the metallurgical explanation. The most evident changes in the microstructure of 9%Cr steels occur with the nucleation of Laves-phase as well as the nucleation of Z-phase at longer times. The precipitation of Laves phase has two relevant aspects by the creep strength point of view. On one hand, high amounts of Mo and W contents are incorporated in this phase, causing a depletion of these elements from the solid solution and thus a reduction of their contribution to the overall creep resistance. On the other hand, the increased volume fraction of secondary phases leads to a higher precipitation strengthening during the first precipitation phase: at the beginning, the precipitation of fine Laves phase increases the creep resistance; however if the coarsening rate is not taken under control, the mean diameter of these particles reaches micrometric dimensions with a detrimental effect on creep behaviour within 103 hours in the range 600°C–650°C. The high coarsening rate of Laves phase is therefore the major cause of the lowering of creep properties of Grades 91, 911 and 92. Coarsening of Laves phase particles over a critical size triggers the cavity formation and the consequent brittle intergranular fracture. Transition from ductile fracture to brittle intergranular fracture often occurs in long-term creep at the onset of coarsening of Laves particles, which result to be the preferential site for cavities nucleation in the 9%Cr steels. Z-phase was recognized in 9%Cr steels after long term exposure, but in far smaller amount than on 12%Cr steels: no dramatic drop in volume fraction of MX was observed in association to the nucleation of this phase, therefore it is believed that the modified Z-phase does not affect significantly the long term creep properties of Grades 91, 911 and 92. The dimple pattern is typical of ductile fracture, which occurs for short service period (hence highest stress). At low stresses, cavities are formed at the triple grain junctions at which Laves particles are often found, causing wedge crack, otherwise isolated cavities can form independently at coarse Laves phase particles (Figure 13). The latter type is often observed after long-term creep in the interganular fracture region. In both cases, brittle fracture occurs at the onset of coarsening of Laves particles, which result to be the preferential site for cavities nucleation in the 9%Cr steels.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Seok Jun Kang ◽  
Hoomin Lee ◽  
Jae Boong Choi ◽  
Moon Ki Kim

Ultrasuper critical (USC) thermal plants are now in operation around the globe. Their applications include superheaters and reheaters, which generally require high temperature/pressure conditions. To withstand these harsh conditions, an austenitic heat-resistant HR3C (ASME TP310NbN) steel was developed for metal creep resistance. As the designed life time of a typical thermal plant is 150,000 h, it is very important to predict long-term creep behavior. In this study, a three-state variable continuum damage model (CDM) was modified for better estimation of long-term creep life. Accelerated uniaxial creep tests were performed to determine the material parameters. Also, the rupture type and microstructural precipitation were observed by scanning electron microscopy. The creep life of HR3C steel was predicted using only relatively short-term creep test data and was then successfully verified by comparison with the long-term creep data.


Author(s):  
Kenji Kako ◽  
Susumu Yamada ◽  
Masatsugu Yaguchi ◽  
Yusuke Minami

Type IV damage has been found at several ultra-supercritical (USC) plants that used high-chromium martensitic steels in Japan, and the assessment of the remaining life of the steels is important for electric power companies. The assessment of the remaining life needs long-term creep data for over 10 years, but such data are limited. We have attempted to assess the remaining life by creep tests and by microstructural observation of Grade 91 steels welded pipes which were used in USC plants for over 10 years. Following the results of microstructural observation of USC plant pipes, we find that microstructures, especially distribution of MX precipitates, have large effect on the creep life of Grade 91 steels.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Imanuel Tarigan ◽  
Keiichi Kurata ◽  
Naoki Takata ◽  
Takashi Matsuo ◽  
Masao Takeyama

ABSTRACTThe creep behavior of a new type of austenitic heat-resistant steel Fe-20Cr-30Ni-2Nb (at.%), strengthened by intermetallic Fe2Nb Laves phase, has been examined. Particular attention has been given to the role of grain boundary Laves phase in the strengthening mechanism during long-term creep. The creep resistance increases with increasing area fraction (ρ) of grain boundary Laves phase according to equation ε/ε = (1−ρ), where ε0 is the creep rate at ρ = 0. In addition, the creep rupture life is also extended with increasing ρ without ductility loss, which can yield up to 77% of elongation even at ρ = 89%. Microstructure analysis revealed local deformation and well-developed subgrains formation near the grain boundary free from precipitates, while dislocation pile-ups were observed near the grain boundary Laves phase. Thus, the grain boundary Laves phase is effective in suppressing the local deformation by preventing dislocation motion, and thereby increases the long-term creep rupture strength. This novel creep strengthening mechanism was proposed as “grain boundary precipitation strengthening mechanism” (GBPS).


2018 ◽  
Vol 89 (8) ◽  
pp. 1472-1487
Author(s):  
Krzysztof Zerdzicki ◽  
Pawel Klosowski ◽  
Krzysztof Woznica

In this paper the coupled service (constructional tension) and environmental (sunlight, rainfalls, temperature variations) ageing influence on the polyester-reinforced polyvinyl chloride (PVC)-coated fabric VALMEX is studied. Two cases of the same fabric have been analyzed: one USED for 20 years on the real construction of the Forest Opera in Sopot (Poland), and one kept as a spare material (NOT USED). The following tests have been conducted: uniaxial tensile, biaxial tensile and long-term creep tests. The obtained results have been used for the parameter identification of the piecewise non-linear, Burgers and Bodner–Partom models. Next, the analysis of the influence of environmental conditions on the parameters of these models has been made. It has been concluded that some parameters are more and the others are less sensitive to the exposure to environmental and mechanical conditions. The change of material parameters for fill threads (due to larger deformation) is higher. The obtained results may be useful in the durability evaluation of the textile membranes reinforced with polyester threads and PVC coated. All the constitutive models with the identified parameters may be used for the numerical analysis of structures made of fabrics at the service beginning and after long-term usage.


2013 ◽  
Vol 639-640 ◽  
pp. 493-497
Author(s):  
Woo Tai Jung ◽  
Sung Yong Choi ◽  
Young Hwan Park

The hydraulic loading device commonly used for creep test necessitates continuous recharge of the hydraulic pressure with time and is accompanied by slight variation of the permanent load at each recharge. Therefore, accurate test results cannot be obtained for long-term creep tests requiring time-dependent behavioral analysis during more than 6 months. This study conducts creep test as part of the analysis of the long-term characteristics of fiber-reinforced lean concrete sub-base of pavement. The creep test is executed using the new load-amplifier device not a conventional loading device. Since the results of the preliminary verification test on the new creep test device show that constant permanent load is applied without significant variation, it can be expected that more accurate measurement of the creep will be possible in a long-term compared to the conventional hydraulic device. In addition, the creep test results of sub-base specimens reveal the occurrence of large instantaneous elastic strain, differently from the strain curve observed in ordinary concrete, as well as the occurrence of small creep strain leading to low creep coefficient.


2018 ◽  
Vol 78 (3) ◽  
pp. 1617-1629 ◽  
Author(s):  
Mohammad Bagher Eslami Andargoli ◽  
Kurosh Shahriar ◽  
Ahmad Ramezanzadeh ◽  
Kamran Goshtasbi
Keyword(s):  

Author(s):  
Muneeb Ejaz ◽  
Norhaida Ab Razak ◽  
Andrew Morris ◽  
Scott Lockyer ◽  
Catrin M. Davies

P91 steels are widely used in high temperature components for power generation. Creep data is often generated through accelerated short term creep tests, for practical reasons, via increasing stress or temperature though this may alter the creep behaviour. Through normalising the creep test stress by tensile strength the Wilshire models reduce the batch to batch scatter in the creep data and enable the prediction of long term creep data from relatively short term test results. In this work it is shown that the Wilshire models fitted to uniaxial creep rupture data can be used to predict failure in both as cast and service exposed multiaxial tests. This is provided that the equivalent stress is the rupture controlling stress, as is the case for the P91 tests examined, and the tensile strength is measured as part of the test programme.


2017 ◽  
Vol 270 ◽  
pp. 183-188
Author(s):  
Dagmar Jandová

Conventional (CCT) and accelerated (ACT) creep tests of a weld joint made of COST F and COST FB2 steels were carried out over a temperature range from 550 °C to 650 °C. Fracturing of the crept specimens was located in the heat affected zone (HAZ) of the F steel. Two specimens were selected after CCT and ACT for quantitative evaluation of the precipitates and compared to the weld joint in as-received conditions. Scanning and transmission electron micrographs were used to measure the precipitate size. Both methods were compared and the accuracy of the results was discussed. It was concluded that ACT can simulate the precipitation of chromium carbides and structure recovery during long term creep exposures. However, precipitation of Laves phase during CCT was not recorded after ACT. Therefore, it is difficult to use ACT in this experiment for estimating the long term creep strength.


Sign in / Sign up

Export Citation Format

Share Document