Recent R&D on Superconducting Wires for High-Field Magnet

2014 ◽  
Vol 783-786 ◽  
pp. 2081-2090 ◽  
Author(s):  
Xin Zhe Jin ◽  
Tatsushi Nakamoto ◽  
Kiyosumi Tsuchiya ◽  
Akira Yamamoto ◽  
Toru Ogitsu ◽  
...  

Development for superconducting wires of materials such as Nb3Al and the high-temperature superconductors (HTS such as REBCO, Bi2223, and Bi2212) has been carried out for high-field magnet applications. It is known that these types of wire exhibit very different characteristics and performance for different applications. The development of Nb3Al wire for high-field accelerator magnet has resulted in remarkable achievements in critical current using a Rapid Heating and Quenching (RHQ) method by High Energy Accelerator Research Organization (KEK) and National Institute for Materials Science (NIMS). As one example of a characteristic of Nb3Al, the strain sensitivity of the critical current in the RHQ-Nb3Al wire is better than that of Nb3Sn wire. A strain study is needed to further the development of a high-filed magnet; therefore, we have carried out experimental studies using the neutron diffractometer at J-PARC Takumi. Researchers have recently achieved the highest critical current density for REBCO wires in a high-field above 15 T. For this reason, REBCO wire has been considered for high-field magnet NMR applications in Riken. But several obstacles remain, including coil degradation, shielding current and thermal runaway. In this paper, R&D on recent advances for applications will be presented.

2019 ◽  
Vol 19 (02) ◽  
pp. 1950010 ◽  
Author(s):  
A. V. Ushakov ◽  
I. V. Karpov ◽  
V. G. Demin ◽  
A. A. Shaihadinov ◽  
A. I. Demchenko ◽  
...  

The influence of CuO nanoscale inclusions as the second component of the composites on the transport properties of superconducting polycrystals YBa2Cu3O7 was studied. Samples of YBa2Cu3O[Formula: see text] with different content of CuO nanoparticles were synthesized. The analysis of magnetic properties was carried out within the framework of the extended critical state model. It was found that the addition of 20[Formula: see text]wt.% CuO nanoparticles leads to an increase in the critical current density at [Formula: see text][Formula: see text]K. A further increase to 30[Formula: see text]wt.% reduces the critical current density. The results of the experimental studies of a switching superconducting fault current limiter in AC voltage networks based on high-temperature superconductors (HTSC) of the 2nd generation are given in this work. The testing equipment contains a series-connected HTSC module and a high-speed current switch with a break time of 9[Formula: see text]ms. The high efficiency of the samples made from the YBa2Cu3O[Formula: see text] + CuO nanocomposite material as an active element of a resistive current limiter is shown.


2017 ◽  
Vol 7 (7) ◽  
pp. 671 ◽  
Author(s):  
Toshiaki Inada ◽  
Takayuki Yamazaki ◽  
Tomohiro Yamaji ◽  
Yudai Seino ◽  
Xing Fan ◽  
...  

2012 ◽  
Vol 170 (5-6) ◽  
pp. 520-530 ◽  
Author(s):  
J. A. A. J. Perenboom ◽  
J. C. Maan ◽  
M. R. van Breukelen ◽  
S. A. J. Wiegers ◽  
A. den Ouden ◽  
...  
Keyword(s):  

2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


2007 ◽  
Vol 74 (4) ◽  
pp. 197-205
Author(s):  
F. Pinto ◽  
A. Calarco ◽  
A. Brescia ◽  
E. Sacco ◽  
A. D'addessi ◽  
...  

Purpose Congenital abnormalities and acquired disorders can lead to organ damage and loss. Nowadays, transplantation represents the only effective treatment option. However, there is a marked decrease in the number of organ donors, which is even yearly worsening due to the population aging. The regenerative medicine represents a realistic option that allows to restore and maintain the normal functions of tissues and organs. This article reviews the principles of regenerative medicine and the recent advances with regard to its application to the genitourinary tract. Recent findings The field of regenerative medicine involves different areas of technology, such as tissue engineering, stem cells and cloning. Tissue engineering involves the field of cell transplantation, materials science and engineering in order to create functional replacement tissues. Stem cells and cloning permit the extraction of pluripotent, embryonic stem cells offering a potentially limitless source of cells for tissue engineering applications. Most current strategies for tissue engineering depend upon a sample of autologous cells from the patient's diseased organ. Biopsies from patients with extensive end-stage organ failure, however, may not yield enough normal cells. In these situations, stem cells are envisaged as being an alternative source. Stem cells can be derived from discarded human embryos (human embryonic stem cells), from fetal tissue or from adult sources (bone marrow, fat, skin). Therapeutic cloning offers a potentially limitless source of cells for tissue engineering applications. Regenerative medicine and tissue engineering scientists have increasingly applied the principles of cell transplantation, materials science and bioengineering to construct biological substitutes that will restore and maintain normal function in urological diseased and injured tissues such as kidney, ureter, bladder, urethra and penis. Conclusions Regenerative medicine offers several applications in acquired and congenital genitourinary diseases. Tissue engineering, stem cells and, mostly, cloning have been applied in experimental studies with excellent results. Few preliminary human applications have been developed with promising results.


2006 ◽  
Vol 74 (17) ◽  
Author(s):  
J. Chen ◽  
V. Ferrando ◽  
P. Orgiani ◽  
A. V. Pogrebnyakov ◽  
R. H. T. Wilke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document