Microstructure and Cryogenic Mechanical Properties of AA5083 Joints Prepared by Friction Stir Welding

2014 ◽  
Vol 788 ◽  
pp. 243-248 ◽  
Author(s):  
Bao Kang Gu ◽  
Da Tong Zhang

In this study, 5083 aluminum alloy plates with a thickness of 3mm are friction stir welded and the microstructure and mechanical properties of the joints were characterized. In particular, tensile behavior of the joints is examined at 77K. It is found that defect-free joints can be obtained under a tool rotational rate of 800rpm and a welding speed of 60mm/min. The friction stirring welds exhibit finer microstructure and higher hardness than that of the base material due to the grain refinement. The ultimate tensile strength (UTS) and elongation of the joints measured at 298K are 316MPa and 21.3%, which are nearly equal to those of the base material. With the tensile test temperature decreasing to 77K, UTS and elongation of both the base material and joints increase. Comparing with tensile testing at 298K, dimples on the fracture surface of the samples tested at 77K are more uniform in distribution. The improvement of the mechanical properties of specimens at low temperature is related to the inactivation of planar slip and the strengthening of strain hardening.

Author(s):  
J.C. Verduzco Huarez ◽  
R. Garcia Hernandez ◽  
G. M. Dominguez Almaraz ◽  
J.J. Villalón López

This research work focuses on the study of the improvement of mechanical properties, specifically the tensile strength of 6061-T6 aluminum alloy on prismatic specimens with 9.5 mm thickness that has been subjected to friction stir welding process and two heat treatments; solubilized and aging before or after the welding process. Three cases studied and evaluated were, welding of the base material without heat treatment (BMW), solubilized heat treatment and partial aging of the base material before welding (HTBW), and heat treatment of solubilized and aging of the base material after welding (HTAW). The obtained results show an increase of about 10% (20 MPa) of tensile strength for the HTBW process, compared to BMW case. In addition, for the case of HTAW, the obtained tensile resistance presents a joint efficiency of 96%, which is close to the tensile strength of the base material (»310 MPa).


Author(s):  
Rongzheng Xu ◽  
Zhicheng Wei ◽  
Jianbo Jiang ◽  
Yanxi Hou ◽  
Hui Li ◽  
...  

Butt-lap configuration of aluminum alloys was friction stir welded under various tool offsets, rotational speeds, and tool geometries. The tool offset was introduced to mitigate the inherent retreating side hook. As the probe was placed inwards, the retreating side hook was mitigated, but a severe S-line was formed. Since the inherent retreating side hook was difficult to further mitigate, the S-line was selected to be mitigated by increasing the rotational speed. But an excessive rotational speed (2000 r/min) could cause a severe upward-bending retreating side hook, which decreased the effective plate thickness. Subsequently, two-section stepped probes were employed to mitigate the defects. The S-line and retreating side hook were both mitigated and its ultimate tensile strength (369 MPa) reached 91% of the base material.


2018 ◽  
Vol 913 ◽  
pp. 49-54
Author(s):  
Jian Xin Wu ◽  
Chong Gao ◽  
Rui Yin Huang ◽  
Zhen Shan Liu ◽  
Pi Zhi Zhao

5083 aluminum alloy, due to moderate strength, good thermal conductivity and formability, is an ideal structural material for car production. Influence of cold rolling process on microstructures and mechanical properties of 5083 aluminum alloys is significant and research hotspots. In this paper, cold deformation and annealing processes on grains, tensile properties and anisotropies of 5083 alloy sheets were studied. Results showed that incomplete recrystallization occured on 5083 alloy sheets when annealing temperature was at 300°C. The degree of recrystallization increased slightly with the cold deformation raised from 30% to 50% and varied slightly with prolonged annealing time from 2h to 4h. Furthermore, fully recrystallization occurred on 5083 alloy sheets at the annealing temperature above 320°C. Tensile strength of 5083 alloy sheets reduced significantly when the annealing temperature was raised from 300°C to 320°C, while it varied slightly when the annealing temperature continued to rise to 380°C.


Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanis Paramaguru ◽  
Mokhtar Awang

As compared to normal Friction Stir Welding (FSW) joints, the Underwater Friction Stir Welding (UFSW) has been reported to be obtainable in consideration of enhancement in mechanical properties. A 5052-Aluminum Alloy welded joints using UFSW method with plate thickness of 6 mm were investigated, in turn to interpret the fundamental justification for enhancement in mechanical properties of material through UFSW. Differences in microstructural features and mechanical properties of the joints were examined and discussed in detail. The results indicate that underwater FSW has reported lower hardness value in the HAZ and higher hardness value in the intermediate of stir zone (SZ). The average hardness value of underwater FSW increases about 53% greater than its base material (BM), while 21% greater than the normal FSW. The maximum micro-hardness value was three times greater than its base material (BM), and the mechanical properties of underwater FSW joint is increased compared to the normal FSW joint. Besides, the evaluated void-area fraction division in the SZ of underwater FSW joint was reduced and about one-third of the base material (BM). The approximately estimated average size of the voids in SZ of underwater FSW also was reduced to as low as 0.00073 mm2, when compared to normal FSW and BM with approximately estimated average voids size of 0.0024 mm2 and 0.0039 mm2, simultaneously.


2016 ◽  
Vol 48 (1) ◽  
pp. 208-229 ◽  
Author(s):  
Murshid Imam ◽  
Yufeng Sun ◽  
Hidetoshi Fujii ◽  
Ninshu Ma ◽  
Seiichiro Tsutsumi ◽  
...  

2016 ◽  
Vol 49 (6) ◽  
pp. 498-512 ◽  
Author(s):  
Ali Doniavi ◽  
Saeedeh Babazadeh ◽  
Taher Azdast ◽  
Rezgar Hasanzadeh

Although considerable progress has been made in recent years in field of polymer welding, challenges still remain in using a friction stir welding method to join polycarbonate (PC) composites. This research provides an investigation on the effect of welding parameters (tool’s travel and rotational speeds) on mechanical properties of PC nanocomposite weld lines. PC nanocomposites were prepared with different percentages of Al2O3 nanofiller using a twin screw extruder and injection moulded as sheets in order to ease the welding. Considering various parameters and their levels, optimization of Taguchi experimental design was carried out, an L16 orthogonal standard array was selected and the effective parameter was calculated using analysis of variance of the results. The results indicated that nanoalumina percentage is the most effective parameter on the tensile strength of weld and tool’s travel speed and rotational speed are next effective parameters, respectively. According to signal-to-noise ratio, maximum weld tensile strength (89.5% of base material) is revealed when nanoalumina percentage, tool’s travel speed and tool’s rotational speed were chosen as 1 wt%, 12 mm/min and 1250 r/min, respectively.


2014 ◽  
Vol 699 ◽  
pp. 169-174
Author(s):  
Achmad Zubaydi ◽  
Nurul Muhayat ◽  
Budie Santosa ◽  
Dony Setyawan

Double sided friction stir butt welds on 6 mm thick of 5083 aluminum alloy were produced. Two variants of the weld side combination, different weld side (DS) and same weld side (SS), have been made to investigate the effect of the weld side on mechanical properties.The SS is a double sided welding process that produces advancing side in one plate and retreating side in the other one. On the other hand, the DS is a double sided welding process that causes advancing side and retreating side in each plate. Tensile properties of the joints were evaluated and correlated with macrostructure and hardness. The weld side influenced the macrostructure and mechanical properties of welded joints. The different weld side (DS) had better mechanical properties than the same weld side (SS).


Sign in / Sign up

Export Citation Format

Share Document