FEM-Based Prediction and Control of Milling Deformation for a Thin-Wall Web of Ti-6Al-4V Alloy

2014 ◽  
Vol 800-801 ◽  
pp. 368-373 ◽  
Author(s):  
Ting Ting Chen ◽  
Bin Rong ◽  
Yin Fei Yang ◽  
Wei Zhao ◽  
Liang Li ◽  
...  

This paper presents the prediction method of cutting force and dimensional error of Ti6Al4V alloy thin-wall components in end-milling operations. Based on the FEM simulation software and force-model, machining deformation was predicted by two kinds of FEM models, and then compared with the measured data. Results obtained from the proposed models and the tests show that the coupling model of thermal-mechanical having better agreement with the experimental results. Besides, the test results also prove the new tool-path pattern proposed in this paper is useful to reduce the machining error.

2013 ◽  
Vol 395-396 ◽  
pp. 1008-1014
Author(s):  
Yu Li ◽  
Chao Sun

Chatter has been a problem in CNC machining process especially during machining thin-walled components with low stiffness. For accurately predicting chatter stability in machining Ti6Al4V thin-walled components, this paper establishes a chatter prediction method considering of cutting parameters and tool path. The fast chatter prediction method for thin-walled components is based on physical simulation software. Cutting parameters and tool path is achieved through the chatter stability lobes test and finite element simulation. Machining process is simulated by the physical simulation software using generated NC code. This proposed method transforms the NC physical simulation toward the practical methodology for the stability prediction over the multi-pocket structure milling.


2012 ◽  
Vol 217-219 ◽  
pp. 1341-1345 ◽  
Author(s):  
Zhao Cheng Wei ◽  
Min Jie Wang ◽  
Wu Chu Tang ◽  
Liang Wang

This paper presents a new approach of tool deflection error regularization and compensation in end milling of contour surfaces. The material removal rate (MRR) is adopted as the dominant factor of surface dimensional error. A mathematics model of determining the MRR in generalized contour surfaces machining is proposed. Feedrate scheduling methodology is applied to regulate a constant MRR along curved tool path. The expectation with the constant MRR is that it will potentially produce a constant surface dimensional error. Thus, the compensation can be conveniently achieved by offsetting the nominal finishing path. The desired MRR and corresponding offsetting value of finishing tool path are determined by a peripheral milling test. Machining results obtained in this study reveal that the proposed approach can significantly reduce the surface dimensional error and the smooth variation of feedrate can get a few variation of surface dimensional error. Comparing to the existing methods, the time-consuming iterative process in error compensation is omitted.


Author(s):  
Alex Elías-Zúñiga ◽  
Jovanny Pacheco-Bolívar ◽  
Francisco Araya ◽  
Alejandro Martínez-López ◽  
Oscar Martínez-Romero ◽  
...  

The aim of this paper is to obtain the stability lobes for milling operations with a nonlinear cutting force model. The work is focused on the generation of stability lobes based on a formulation with Chebyshev polynomials and the semidiscretization method, considering a nonlinear cutting force model. Comparisons were conducted between experimental data at 5% radial immersion with aluminum workpiece and predictions based on Chebyshev and semidiscretization. In all cases, the use of nonlinear cutting force model provides better prediction of process stability conditions.


2016 ◽  
Vol 3 ◽  
pp. 78-81
Author(s):  
Henrik Tamás Sykora ◽  
Attila Kovács ◽  
Dániel Bachrathy

In the design phase of the milling process, there is a great need for the prediction of the cutting force, the required torque and power of the spindle. These informations could be used to optimize the tool path and improve the material removal rate. In this work, we present our dexel based simulation software, its modules, calculations steps and the simulation method. Different force models were analysed to describe the specific force as a function of the local chip thickness. The models were fitted to the measured force data. Then the selected force model was validated in case of a complex tool path.


Manufacturing ◽  
2002 ◽  
Author(s):  
Nejah Tounsi ◽  
Trevor E. Bailey ◽  
Mohamed A. Elbestawi

This paper proposes an Optimized Feed Scheduling Strategy (OFSS). This strategy integrates the feed drive dynamics with the minimum-time trajectory planing to achieve the desired feed rate at the appropriate tool position along specified tool path. It optimizes the use of the feed drive capabilities and provides good tracking of the cutting geometry variations. The feed scheduling is applied to maintain near-constant cutting force magnitude. An integrated geometric and mechanistic force model is used to estimate the in-cut geometry and the cutting force. A methodology based on time series modeling and analysis is proposed to identify the low frequency feed drive dynamics. The resulting model is applied as an acceleration/deceleration processor (Acc/Dec) to relate the actual feed rate to the commanded feed rate specified in the G-Code file. The effectiveness of the OFSS is analyzed using ball end milling operations. Its performance in terms of productivity and machining safety is assessed based on comparison with other feed scheduling techniques where the trajectory planing does not consider the feed drive dynamics.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4038
Author(s):  
Balázs Mikó ◽  
Bálint Varga ◽  
Wojciech Zębala

The machining of free form surfaces is one of the most challenging problems in the field of metal cutting technology. The produced part and machining process should satisfy the working, accuracy, and financial requirements. The accuracy can describe dimensional, geometrical, and surface roughness parameters. In the current article, three of them are investigated in the case of the ball-end milling of a convex and concave cylindrical surface form 42CrMo4 steel alloy. The effect of the tool path direction is investigated and the other cutting parameters are constant. The surface roughness and the geometric error are measured by contact methods. Based on the results, the surface roughness, dimensional error, and the geometrical error mean different aspects of the accuracy, but they are not independent from each other. The investigated input parameters have a similar effect on them. The regression analyses result a very good liner regression for geometric errors and shows the importance of surface roughness.


2011 ◽  
Vol 223 ◽  
pp. 93-100 ◽  
Author(s):  
Abdelhadi Moufki ◽  
Daniel Dudzinski ◽  
G. Le Coz

In this work, a predictive machining theory, based on an analytical thermomechanical approach of oblique cutting [17,18], has been applied to the peripheral milling process. That leads to a three dimensional cutting force model for end milling operations which is an alternative approach in comparison with the mechanistic one. In this model, the material characteristics such as strain rate sensitivity, strain hardening and thermal softening are considered and thermomechanical coupling and inertia effects are accounted for. Calculated and experimental results are compared for up-milling.


Author(s):  
Hongcheng Wang ◽  
James A. Stori

Conventional tool-path generation strategies are readily available to generate geometrically feasible trajectories. Such approaches seldom take into consideration physical process concerns or dynamic system limitations. In the present work, an approach for improving a geometrically feasible tool-path trajectory based on quantifiable process metrics is developed. Two specific measures of toolpath quality are incorporated into the iterative improvement algorithm: instantaneous path curvature and instantaneous cutter engagement. These metrics are motivated by a desire to minimize acceleration requirements and maintain a stable steady-state cutting process during high-speed machining. The algorithm has been implemented for two-dimensional contiguous end-milling operations with flat end-mills, and case studies are presented to illustrate the approach.


Author(s):  
Derek Yip-Hoi

Virtual Machining (VM) is the use of computers to simulate the physics of machining processes. It can be used to effectively identify problems in machining complicated workpieces and in optimizing processes. At the heart of VM is the ability to predict the cutting forces generated as the tool generates chips at the tool workpiece interface. For these predictions to be realistic two things are necessary. First, accurate representations of how the cutter engages the workpiece need to be generated along each toolpath under consideration. This is referred to as the Cutter/Workpiece Engagement (CWE). Second, a force model is needed that integrates the contribution from each element within the CWE. In this paper a new technique for integrating the force contributions is presented. It utilizes a Quad-Tree representation for the CWE. This representation provides several advantages over other approaches for integrating the force contributions. Amongst these is the ability to represent the aggregated force at different resolutions. This has the potential to reduce the time required to perform a simulation by scanning a tool path at a lower resolution to bound intervals where heavy engagements are encountered. These intervals can then be analyzed at a higher resolution for greater accuracy. Examples are presented using CWEs extracted for 2 1/2D milling operations from a component modeled on a leading CAD/CAM system.


Sign in / Sign up

Export Citation Format

Share Document