Influences of Reaction Temperature on Structure and Performances of SnO2 Nanocrystals Prepared by Microwave Hydrothermal Method

2014 ◽  
Vol 809-810 ◽  
pp. 122-127 ◽  
Author(s):  
Li Xiong Yin ◽  
Fei Fei Wang ◽  
Jian Feng Huang ◽  
Dan Wang ◽  
Jia Yin Li

SnO2nanocrystals were synthesized using SnCl4•5H2O and NH3•H2O as the main raw materials and distilled water as the solvent by microwave hydrothermal. Reaction temperature on the structure and photocatalytic activities of the SnO2nanocrystals by microwave hydrothermal process was studied. The phase composition, morphologies and photocatalytic activities of the product were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TEM (transmission electron microscope) and photochemical reaction instrument. Results show the crystalline and conglobation of the product have significant effect on its photocatalytic properties. The homogeneous low-agglomerated and well crystallined SnO2nanocrystals prepared at 180 °C has good photocatalytic activities during photocatalytic degradation of RhB process.

2011 ◽  
Vol 236-238 ◽  
pp. 1712-1716 ◽  
Author(s):  
Hai Tao Liu ◽  
Jun Dai ◽  
Jia Jia Zhang ◽  
Wei Dong Xiang

Bismuth selenide (Bi2Se3) hexagonal nanosheet crystals with uniform size were successfully prepared via a solvothermal method at 160°C for 22 h using bismuth trichloride(BiCl3) and selenium powder(Se) as raw materials, sodium bisulfite(NaHSO3) as a reducing agent, diethylene glycol(DEG) as solvent, and ammonia as pH regulator. Various techniques such as X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and selected area electron diffraction (SAED) were used to characterize the obtained products. Results show that the as-synthesized samples are pure Bi2Se3 hexagonal nanosheet crystals. A possible growth mechanism for Bi2Se3 hexagonal nanosheet crystals is also discussed based on the experiment.


2014 ◽  
Vol 936 ◽  
pp. 986-991
Author(s):  
Chuan Hui Gao ◽  
Li Ding ◽  
Yu Min Wu ◽  
Chuan Xing Wang ◽  
Jun Xu

A low-cost raw material, bittern obtained from the production process of sea salt, was used to prepare magnesium oxysulfate hydrate (MgSO4·5Mg (OH)2·2H2O, abbreviated as 152MOS) whiskers via hydrothermal synthesis with ammonia and magnesium sulfate as the other starting raw materials. The bittern was firstly filtered and then used directly without de-coloring. X-ray powder diffraction (XRD), transmission electron microscope (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM) were employed to investigate the composition and morphology of the products. It was found that the 152MOS whiskers synthesized from bittern at 190°C for 3 hours exhibited fanlike morphology. The formation of the fanlike whiskers was inhibited and most of the whiskers presented as single fibers when ethanol was used as crystal control agent in the hydrothermal process. From the two-dimensional steps observed at tips of the whiskers, a possible growth mechanism was speculated that it was the extension of dislocations that made the growth of the whiskers.


2017 ◽  
Vol 268 ◽  
pp. 172-176 ◽  
Author(s):  
Nurul Norfarina Hasbullah ◽  
Oon Jew Lee ◽  
Josephine Liew Ying Chyi ◽  
Soo Kien Chen ◽  
Zainal Abidin Talib

In this work, BaTiO3 nanoparticles were synthesized through hydrothermal method. The powder obtained from the hydrothermal process (as-synthesized powder) was calcined at 1000 °C. The phase formation and morphology of the as-synthesized and calcined powders were studied using X-ray diffraction (XRD), thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyzer, and transmission electron microscope (TEM). The XRD data showed that the as-synthesized powder is partially amorphous. Upon calcining the powder at 1000 °C, highly crystalline BaTiO3 with tetragonal structure was obtained. As shown by TGA and DSC analysis, the precursor powder was completely transformed into BaTiO3 at 1000 °C. The presence of BaCO3 as an impurity phase in the powder is due to the lack of Ba2+ / Ti3+/4+. Transmission electron microscope images showed that the particle size of the as-synthesized powder increased after calcination due to crystal growth. In addition, nanocubes with the average size of around 11.66 nm were obtained as a result of the calcination compared to the ellipsoid like particles of the as-synthesized powder.


2014 ◽  
Vol 32 (3) ◽  
pp. 430-435 ◽  
Author(s):  
Arsia Khanfekr ◽  
Morteza Tamizifar ◽  
Rahim Naghizadeh

AbstractBaTi1−x NbxO3 compounds (with x = 0.0, 0.01, 0.03, 0.06, and 0.09) were synthesized by rotary-hydrothermal (RH) method. The process was conducted at 180 °C for 5 hours in a Teflon vessel that was rotated at a speed of 160 rpm during the hydrothermal reaction. The effects of donor concentration on the structure and properties of BaTi1−x NbxO3 compounds were investigated. The experiments for the BaTiO3±Nb2O3 system produced by a solid state reaction at high temperature at different concentrations of niobium, with the use of RH processing have not been reported in previous works. For the phase evolution studies, X-ray diffraction patterns (XRD) were analyzed and Raman spectroscopy measurements were performed. The transmission electron microscope (TEM) and the field emission scanning electron microscope (FE-SEM) images were taken for the detailed analysis of the grain size, surface and morphology of the compound.


2021 ◽  
Vol 252 ◽  
pp. 02076
Author(s):  
Lijun Jia ◽  
Qianqian Zhang ◽  
Xu Yan ◽  
Ke Zeng

Graphite phased carbon nitride and indium silver molybdate [g-C3N4 / AgIn(MoO4)2]photocatalytic materials were prepared by hydrothermal method. X-ray diffraction, transmission electron microscope, scanning electron microscope, X-ray photoelectric spectrum, UV-vis diffuse reflection spectrum and solid fluorescence were used to analyze its structure and morphology. The results showed that the catalytic activity of g-C3N4 / AgIn(MoO4)2 was significantly higher than that of pure g-C3N4 and AgIn(MoO4)2 under visible light irradiation. Under the conditions of g-C3N4 and AgIn(MoO4)2 with a compound ratio of 2:1 and hydrothermal reaction at 120℃ for 6 hours, the degradation efficiency of tetracycline hydrochloride was the best. After 1 hour of light reaction, the degradation rate of tetracycline hydrochloride could reach 75.3%. g-C3N4/AgIn(MoO4)2 is expected to be a promising photocatalyst for wastewater treatment.


2011 ◽  
Vol 233-235 ◽  
pp. 2091-2097 ◽  
Author(s):  
Hao Yong Yin ◽  
Ling Wang ◽  
Yong Fei Sun ◽  
De Jun Shi ◽  
Xiao Xi Wang

The γ-Bi2MoO6nanoplates with uniform length and width about 100-200nm have been successfully fabricated by SDS assistant hydrothermal process. The γ-Bi2MoO6nanoplates were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy. The results show that the SDS plays an important role in controlling the crystallization and morphologies of Bi2MoO6. The γ-Bi2MoO6nanoplates show high efficient photocatalytic activities in decomposition of methyl orange.


2021 ◽  
Author(s):  
Yan Chen ◽  
Yuemei Lan ◽  
Dong Wang ◽  
Guoxing Zhang ◽  
Wenlong Peng ◽  
...  

A series of Gd2-xMoO6:xEu3+(x=0.18-0.38) nanophosphors were synthesized by the solvothermal method. The properties of this nanophosphor were characterized by x-ray diffraction (XRD), transmission electron microscope (TEM), fluorescence spectra and diffuse...


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 456
Author(s):  
Fahad A. Alharthi ◽  
Hamdah S. Alanazi ◽  
Amjad Abdullah Alsyahi ◽  
Naushad Ahmad

This study demonstrated the hydrothermal synthesis of bimetallic nickel-cobalt tungstate nanostructures, Ni-CoWO4 (NCW-NPs), and their phase structure, morphology, porosity, and optical properties were examined using X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), high resolution Transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) and Raman instruments. It was found that as-calcined NCW-NPs have a monoclinic phase with crystal size ~50–60 nm and is mesoporous. It possessed smooth, spherical, and cubic shape microstructures with defined fringe distance (~0.342 nm). The photocatalytic degradation of methylene blue (MB) and rose bengal (RB) dye in the presence of NCW-NPs was evaluated, and about 49.85% of MB in 150 min and 92.28% of RB in 90 min degraded under visible light. In addition, based on the scavenger’s study, the mechanism for photocatalytic reactions is proposed.


2011 ◽  
Vol 80-81 ◽  
pp. 217-220 ◽  
Author(s):  
Xue Qing Yue ◽  
Hai Jun Fu ◽  
Da Jun Li

Graphite encapsulated nickel nanoparticles were prepared by ball milling andsubsequently annealing a mixture of expanded graphite with nickel powders. The products were characterized by transmission electron microscope and X-ray diffraction. The formation mechanism of the products was discussed. Results show that the products have a size range of 20-150 nm. The graphite and nickel in the products all exhibit a high crystallinity.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


Sign in / Sign up

Export Citation Format

Share Document