An Experimental Study on Effect of T-Joint’s Root Gap on Welding Properties

2017 ◽  
Vol 863 ◽  
pp. 323-327 ◽  
Author(s):  
Yustiasih Purwaningrum ◽  
Panji Lukman Tirta Kusuma ◽  
Dwi Darmawan

The aimed of this research is to investigate the effect of T-Joint’s root gap on physical and mechanical properties of weld metal. Low carbon steel were joined in T-joint types using MIG (Metal Inert Gas) with variation of root gap. The root gap used were 0 mm, 3 mm and 6 mm. The physical properties examined with chemical composition, microstructure and corrosion using optical microscope. The mechanical properties were measured with respect to the strength and hardness using Universal testing machine and Vickers Microhardness. The results show that the highest value found in welds with a gap of 3 mm with a value of 163.57 MPa. Hardness value is directly proportional to the tensile strength of the material. The highest value found in welds with root gap of 3 mm, followed by root gap of 6 mm, and 0 mm Hardness values in the welding area is higher than the parent metal and HAZ because the number of Si, Mn and Cu elements in the welding metals are bigger than base metal. Weld with all variation of root gap have a good corrosion resistance because the corrosion rate in welds with various root gap have a value below 0.02 mmpy. Microstructure of weld metals were Accicular ferrite, Widmanstatten ferrite, and grain boundary ferrite, while microstructure of base metal and HAZ were ferrite and perlite.

2016 ◽  
Vol 835 ◽  
pp. 167-172
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
Tegar Rileh Argihono ◽  
Ryan Sutrisno

The effects of root opening process parameters on the phisical and mechanical properties of mild steel specimens of grade LR Gr A having dimensions 200 mm× 100 mm× 12 mm, welded by gas metal arc welding were investigated. The variation of root opening that used were 3 mm, 5 mm and 7 mm. The physical properties examined with regard with microstructure, macrosructure, and corrosion using optical microscope and stereozoom. The measured of mechanical properties with regard to strength, hardness and toughness using, tensile test, Vickers hardness Test, and Charpy impact test. The test results show the base metal had a hardness of approximately 110 VHN and a maximum hardness of approximately 190 VHN that corellates with microstructure of weld metals. Microstructure of base metal and HAZ are ferite and perlite, while microstructure of weld zone are acicular ferrite and grain boundary ferrite. The corrosion rate of weld metals with various root opening categorized as materials having excellent corrosion resistance value. Welding joints with opening roots 3 mm and 5 mm can be used for construction. All welded specimens exhibited fracture at base metals


2016 ◽  
Vol 705 ◽  
pp. 250-254 ◽  
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
M. Wirawan Pu ◽  
Fandi Alfarizi

The aimed of this research is to determine the feasibility and effect of the mixture of the shielding gas in the physical and mechanical properties. Low carbon steel LR grade A in a thickness 12 mm were joined in butt joint types using GMAW (Gas Metal Arc Welding) with groove’s gap 5 mm and groove angle’s 400 with variation of shielding gas composition. The composition of shielding gas that used were 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2. The measured of mechanical properties with regard to strength, hardness and toughness using, tensile test, bending test, Vickers hardness Test, and Charpy impact test respectively. The physical properties examined with optical microscope. Results show that tensile strength of welding metals are higher than raw materials. Welds metal with mixing Ar + CO shielding gas has the highest tensile strength. Hardness of weld metals with the shielding gas 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2 are 244.9; 209.4; and 209.4 VHN respectively. The temperature of Charpy test was varied to find the transition temperature of the materials. The temperature that used were –60°C, -40°C, -20°C, 0°C, 20°C , and room temperature. Weld metals with various shielding gas have similar trends of toughness flux that was corellated with the microstructure of weld .


2012 ◽  
Vol 581-582 ◽  
pp. 808-816 ◽  
Author(s):  
Chuaiphan Wichan ◽  
Srijaroenpramong Loeshpahn

The joining of austenitic stainless steel (AISI 201) to low carbon steel sheets (CS) was attempted by gas tungsten arc welding (GTAW) with four types of consumables. The studied consumables were ER308L, ER309L, ER316L stainless steel wires, and AWS A5.18 carbon steel wire. The welding parameters – i.e. the current of 90 A and the welding speed of 62 mm.min-1 – were fixed in all welding operations. The microstructure of weld metal produced by stainless steel consumables consisted of delta ferrite in austenite matrix. The delta ferrite in the form of continuous dendrite was observed in weld metals produced by 308L and 309L fillers. The dendrite of delta ferrite was relatively discontinuous in weld metal produced by 316L filler. The microstructure of weld metal produced by carbon steel filler consisted of equiaxed ferrite and pearlite, similar to that of carbon steel. The corrosion behavior of weld metal was investigated by potentiodynamic method. Specimens were tested in 0.35-wt% NaCl solution saturated by laboratory air at 27°C. It was found that the corrosion potential of weld metal produced by carbon steel filler was considerably lower than those of AISI 201 base metal and weld metals welded using stainless steel consumables. Weld metals produced by stainless steel fillers –308L,309L and316L– exhibited the similar corrosion potentials as that of 201 base metal. The pitting potentials of weld metals produced by 309L, 316L fillers were higher than those of 201 base metal and weld metal produced by 308L filler respectively. It was discussed that the increase of Cr content in weld metals by using 309L filler contained with 24.791 wt% of Cr, or the addition of Cr and Mo in weld metals by using 316L filler contained with 21.347 wt% of Cr and 2 wt% of Mo, promoted the pitting corrosion resistance of weld metal to be comparable with that of Fe-17Cr-3Ni (201) base metal. An emission spectroscopy was applied to quantify the amount of elements in weld metals. By considering the contents of Cr and Mo, the pitting resistance equivalent number (PREN) of each weld metal was calculated. The discussion of the corrosion resistance of weld metals related to PREN and microstructure was made in the paper.


2015 ◽  
Vol 1125 ◽  
pp. 195-199
Author(s):  
Toto Triantoro Budi Wardoyo ◽  
S. Izman ◽  
Safian Sharif ◽  
Hosta Ardhyananta ◽  
Denni Kurniawan

In this paper, Shielded Metal Arc Welding (SMAW) was performed on low carbon steel with three types of butt joint (i.e., square, single V, and double V) and uncapping of the weldment. The welding performance is measured based on the mechanical properties (i.e., strength and hardness). Grain size and microstructure of the weldments were also evaluated. The results show that all tested samples show similar tensile strength, which means there was no significant effect of the type of butt joint type or uncapping. The hardness of the weld metal was found to be slightly higher than that of heat affected zone and base metal, in which both showed similar hardness values. The grain size of the weld metal was also finer than that of heat affected zone and base metal. This trend in hardness and grain size on three regions of the welded sample was the same regardless of the butt joint type and whether the weldment was uncapped or not.


2018 ◽  
Vol 876 ◽  
pp. 36-40
Author(s):  
Yustiasih Purwaningrum ◽  
Dwi Darmawan ◽  
Panji Lukman Tirta Kusuma

Heat treatment of T-Joint’s steel arc welded are performed are investigated in this research. The heat treatment process that used were annealing and quenching. The microstructure was investigated by optical microscope. The mechanical behavior of the samples was investigated using universal tensile testing machine for tensile test and Microvickers hardness method for hardness testing. The microstructure of welding zone of welding metals with various heat treatments is grain boundary ferrite, Widmanstatten ferrite and acicular ferrite. The weld metal with quenching treatment has a highest tensile strength with tensile strength 197.97 Mpa. The quenching process increases the tensile strength by 49.58 %. The distortion value in weld metal without heat treatment, quenching and annealing is 0.11mm; 0.04 mm and 0.08 mm respectively. The hardness number of weld metals with quenching process have a highest number base metal, HAZ and weld metals. Results showed that the mechanical properties of T-joints steel arc welded can be improved by various heat treatments.


2015 ◽  
Vol 812 ◽  
pp. 315-320
Author(s):  
Enikö Réka Fábián ◽  
Áron Kótai

It have been studied the cold rolling effects on the microstructure of samples prepared from Al-killed low carbon steel sheets with high coiling temperatures. The microstructure of the hot rolled steels sheet is formed from ferrite and large carbides when the coiling temperature is high. The cold rolling affects the steel mechanical and electrochemical properties due to microstructural changes. We have studied the microstructure by optical microscope and scanning electron microscope. Low angles grain boundaries and the texture of samples were studied by EBSD method.


2015 ◽  
Vol 766-767 ◽  
pp. 780-788
Author(s):  
D. Devakumar ◽  
D.B. Jabaraj ◽  
V.K. Bupesh Raja ◽  
P. Periyasamy

The purpose of this study is to evaluate the mechanical and metallurgical properties of dissimilar metal weld joints between duplex stainless steel/Cold Reduced low carbon Steel (CRS) by Gas Tungsten Arc Welding (GTAW) process. The dissimilar 2 mm thickness plates of duplex stainless steel and cold reduced low carbon steel, conforming to AISI 2205 and IS 513_2008 CR2_D were butt welded by means of gas tungsten arc welding using argon as shielding gas. The butt welding joint arrangement was used for this experiment using E 309L electrode as filler metal. The joints were investigated for mechanical properties and microstructure. Tensile, Hardness and bend tests were carried out to evaluate the mechanical properties. Optical microscopy was used to explore the microstructure. The micro structural examination of the weld region revealed dendritic delta ferrite. Micro examination of DSS base metal revealed elongated grains of austenite (white) with ferrite (Brown). Micro examination of CRS base metal discloses deformed grains of ferrite present in the matrix. Fracture analysis was conducted for the failure part with Scanning Electron Microscope (SEM) and found ductile fracture occurred at CR steel side.


2016 ◽  
Vol 879 ◽  
pp. 849-854 ◽  
Author(s):  
H.B. Tibar ◽  
Zheng Yi Jiang

Optimisation of the physical and mechanical properties of cold rolled thin strips is achieved by controlling the rolling parameters. In this paper, the factors affecting the low carbon steel thin strip profile of asymmetrical cold rolling have been studied at a speed ratio of 1.3 without lubricant applied. The effect of rolling parameters on the resulting microstructure was also investigated. It was found that under dry condition, work roll shifting and work roll cross angle can improve the strip profile, and the improvement is more significant with an increase of work roll cross angle rather than that of work roll shifting. A slight change in microstructure was evident with increasing work roll shifting values. In addition, effects of rolling parameters on the strip profile and microstructure have also been discussed.


2021 ◽  
Vol 14 (1) ◽  
pp. 67-75
Author(s):  
Firas Hameed

The welding of metals is one of the most important processes that require high control for obtaining a good quality of weldments. The joining of dissimilar metals is a more complex operation compared to the joining of similar metals due to the differences in physical metallurgical and mechanical properties. In this article, austenitic stainless steel AISI 303 stud was welded to low carbon steel AISI 1008 plate using arc stud welding (ASW) process. An experimental procedure was applied to estimate the effect of welding parameters namely welding current and welding time on the microstructure and mechanical properties of the joint. The optical microscope V83MC50 was used to show microstructure properties while both the micro-Vickers Hardness and tensile test were adopted to evaluate the mechanical properties. The results revealed that the presence of carbides at the fusion zone FZ towards AISI 303 leads to the maximum value of hardness (501) HV. The best welding parameters were 600 AMP 0.25 second at which joint strength of 515 MPa was recorded. Welding time was the most important parameter in the ASW process followed by welding current, proper selection of welding time, and current welding produces good joint quality


Sign in / Sign up

Export Citation Format

Share Document