General Equivalent Magnetic Circuit Calculation Software Based on the Quasi-Newton Algorithm

2015 ◽  
Vol 833 ◽  
pp. 201-206
Author(s):  
Zhan Shi ◽  
Xiao Fei Li ◽  
Tian Hui Chi ◽  
Cui Ping Wang ◽  
Xing Jun Liu ◽  
...  

Equivalent magnetic circuit method is a rapid calculation method used in magnetic circuit simulation. But for a long time this method can’t be used widely because the algorithm is not general and there is no commercial software developed for this method. In this paper, general software for magnetic circuit calculation was developed using LabVIEW language. Quasi-Newton algorithm was used in solving nonlinear Kirchhoff equation of magnetic circuit in this software. The project file in this software can be shared freely in different calculations. This software is expected to save the time-cost in the design of new product.

1988 ◽  
Vol 1 (1) ◽  
pp. 101-104 ◽  
Author(s):  
Yin Zhang ◽  
R.P. Tewarson

2021 ◽  
Vol 3 (1) ◽  
pp. 93-102
Author(s):  
Hazimah Hazimah ◽  
Zefri Azharman

UKM (small and medium enterprises) in the Tembesi Tower, Tembesi sub-district, are not developing well. This is indicated by the low turnover obtained by each UKM (small and medium enterprise) in 1 month. customer expectations. New products must be made so that these small and medium businesses can survive and continue to exist. The new product must have a distinctive and good quality so that the product positioning is clearer and able to compete with other products on the market. This service activity aims to provide a solution to this by creating a new product in the form of a dab soap that is safe for health and environmentally friendly. Some soaps circulating in the market only prioritize cleaning power, but the chemical content in the soap is harmful to health and the environment. The impact of conventional soap on health is irritation of the skin which, if left for a long time, the irritation will turn into eczema. In addition, conventional soap also harms the environment because the raw material for soap comes from petroleum which is difficult to be broken down by bacteria. Community service activities are carried out in the form of coaching. The service team expects to increase the income and advantages of UKM (small and medium businesses) in the Tembesi Tower and to be able to create jobs or open a business with a revolutionary cream soap product design.


2000 ◽  
Vol 48 (12) ◽  
pp. 3328-3333 ◽  
Author(s):  
V.P. Roychowdhury ◽  
C. Chatterjee ◽  
Zhengjiu Kang

2014 ◽  
Vol 2014 (DPC) ◽  
pp. 000436-000458
Author(s):  
Lajos (Louis) Burgyan ◽  
Yuji Kakizaki

Technical analysis of intellectual property (IP) is conducted for the purpose of legal protection and product development. A brief review of the process of IP analysis and associated terminology is provided along with examples illustrating the significant potential for monetary benefits to be derived. The evolution of the reverse engineering (RE) process in the semiconductor industry is briefly reviewed from a historical perspective. It is shown how the objective of RE, while continuing its traditional engagement in IP protection, has shifted away from “second sourcing” activities to become an active participant by providing valuable services to technology and product development. The assertion is made that the negative connotation often associated with “reverse engineering” is no longer justified; and the legitimacy, usefulness, and respectability of that process is reaffirmed. The effects of international diffusion of technology are described. It is shown that being aware of technology content in competing high-tech products is now greater than ever before. The process of RE and the “toolbox” of career IP analysts are described through the analysis example of an advanced SOC and SIP structure. The dual utility of the analyst's toolbox and skill set is examined as it is being applied a) to the discovery process aimed at intellectual property protection and b) as a means to accelerate product development. Special attention is given to technical IP analysis conducted in association with new product research and development. Practical examples involving the analysis of advanced 3D structures are provided from the field of 3D integrated product development in order to demonstrate how technical IP analysis can a) help avoid costly mistakes, b) capture design wins, and c) accelerate new product development. The synergistic relationship between IP analysis applied to IP protection and product development is explored; and a coordinated and comprehensive approach to technical IP analysis is recommended whenever practical. A high-tech company will realize maximum benefits from a technical analyst's work if IP analysis of competing products is performed for the purpose of product development with the analyst remaining mindful and attentive of the need to protect corporate patent portfolio. Conversely, knowledge gained from technical analysis aimed at protecting the company's patents can be quite useful to the development engineer. Regardless of whether or not the analyst is an employee of the company or a hired sub-contractor, proper description of the task is crucial from the outset. The analyst should be encouraged to take a dual track approach with primary focus directed towards the main intent (IP protection or engineering analysis of a competing product or technology) without ignoring the secondary purpose. At the end of a project, an assessment should be made as to what part of the acquired knowledge is relevant to the engineering community and what portion of the report needs to be directed to the IP department. Technical IP analysis conducted with this dual purpose in mind is a cost-effective way to maximize return on investment (ROI) in RE. It can also be a powerful tool to reduce the cost of new product development while improving time to market. A new area of technical IP analysis, the extraction of parasitic R, L, C elements from SOC and SIP structures, is explored in detail. This field is believed to be of great importance in 3D integration due to the loss or breakup of ground and power delivery planes as a result of increased reliance on vertical interconnections such as interposers and TSVs. These structures introduce troublesome interconnect inductances, resistances, and capacitances. Both power distribution networks (PDN) and high-speed signal paths are affected by interconnect parasitic elements in component modules such as deep sub-micron 22nm ARM processors, multi-stack memories, and multilayer PCBs of high speed communication devices and systems. It is essential for circuit designers, package designers, and system designers to be aware of these risks as early in the design phase as possible. Practical examples are given how an entire PDN of a larger system including complex 2.5D and 3D packages, substrates, and PCB can be reconstructed from the power source down to individual components, including high-speed data paths. Such reconstruction is done using two-dimensional layer images and via structures. The reconstructed file can be 2D or 3D representation. Depending on the objective, the data residing in those files is then imported into state-of-the art circuit simulation tools familiar to the circuit or package designer. At that point, the circuit, package, or system designer can analyze the entire system and extract all parasitic interconnect elements. The circuit designer can then incorporate all those interconnect and passive component parasitic R, L, C, and M elements or their S-parameter representation into a top-level circuit simulation of an integrated circuit and obtain an accurate circuit performance that is truly representative of the final hardware. In summary, the need for precise modeling of the PDN section and certain high-speed data paths of SOC and SIP structures is reaffirmed, and a case is made for making this sometimes labor intensive process available as part of the technical analysis process. The synergy between reverse engineering conducted for the purpose of IP protection and product development is further emphasized. It is concluded that technical IP analysis, competitor product (hardware) analysis, and product development are activities complementary to one another. These activities, if executed thoughtfully, consistently, and systematically, can not only protect IP, increase intellectual asset value, but can also accelerate product development, guide and fuel innovation, and help in setting the direction of research and development.


2020 ◽  
Vol 12 (7) ◽  
pp. 1102
Author(s):  
Bin Zou ◽  
Ning Liu ◽  
Wei Wang ◽  
Huihui Feng ◽  
Xiangping Liu ◽  
...  

Current reported spatiotemporal solutions for fusing multisensor aerosol optical depth (AOD) products used to recover gaps either suffer from unacceptable accuracy levels, i.e., fixed rank smooth (FRS), or high time costs, i.e., Bayesian maximum entropy (BME). This problem is generally more serious when dealing with multiple AOD products in a long time series or over large geographic areas. This study proposes a new, effective, and efficient enhanced FRS method (FRS-EE) to fuse satellite AOD products with uncertainty constraints. AOD products used in the fusion experiment include Moderate Resolution Imaging SpectroRadiometer (MODIS) DB/DT_DB_Combined AOD and Multiangle Imaging SpectroRadiometer (MISR) AOD across mainland China from 2016 to 2017. Results show that the average completeness of original, initial FRS fused, and FRS-EE fused AODs with uncertainty constraints are 22.80%, 95.18%, and 65.84%, respectively. Although the correlation coefficient (R = 0.77), root mean square error (RMSE = 0.30), and mean bias (Bias = 0.023) of the initial FRS fused AODs are relatively lower than those of original AODs compared to Aerosol Robotic Network (AERONET) AOD records, the accuracy of FRS-EE fused AODs, which are R = 0.88, RMSE = 0.20, and Bias = 0.022, is obviously improved. More importantly, in regions with fully missing original AODs, the accuracy of FRS-EE fused AODs is close to that of original AODs in regions with valid retrievals. Meanwhile, the time cost of FRS-EE for AOD fusion was only 2.91 h; obviously lower than the 30.46 months taken for BME.


Sign in / Sign up

Export Citation Format

Share Document