Preparation, Corrosion and Cytocompatability In Vitro of Fluoride-Coated Mg-Zn-Zr Alloy

2016 ◽  
Vol 852 ◽  
pp. 1293-1299
Author(s):  
Hao Ran Zheng ◽  
Jing Zhang ◽  
Chen You ◽  
Min Fang Chen

The present investigation was carried out to optimize the hydrogen fluoride (HF) aqueous solution treatment for an Mg-2.5Zn-0.5Zr alloy, in order to improve the corrosion resistance of the material for orthopaedic applications. An MgF2 coating was formed on the surface of Mg-2.5Zn-0.5Zr alloy treated with HF solution. The effect of the HF concentration and processing time on the morphology and electrochemical performance of the MgF2 coating was systematically studied. The results showed that the MgF2 coating became thick gradually with the increase of the concentration of HF solution. However, the pinhole on the surface treated with 40% HF increased significantly. The coating thickness immersed in the same concentration of HF solution increased with immersion time, and cracks formed in the surface after four hours of immersion, resulting in a decrease in the corrosion potential. When the alloy was immersed in the HF solution with a concentration 20% at 37°C for 2h, a uniform and dense fluoride coating was formed, with a thickness of MgF2 layer of about 0.5μm. The corrosion potential of the coated Mg alloy in simulated body fluid (SBF) was 0.28V higher than the uncoated one. In addition, the fluoride-coated showed a good biocompatibility.

2012 ◽  
Vol 727-728 ◽  
pp. 1238-1242 ◽  
Author(s):  
Roger Borges ◽  
Antônio Carlos da Silva ◽  
Juliana Marchi

Among bioceramics materials, bioglasses which exhibits either a bioactive or resorbable behavior has been studied for many applications, such as bone substitutive and regeneration. When in contact with body fluid, the bioglasses can induce the formation of a hydroxyapatite surface layer. In this paper, we studied the bioactivity of a bioglass containing 48 wt %SiO2, 27 wt% Na2O, 19 wt % CaO and 6 wt %P2O5. After fusion and annealing, the samples were immersed in SBF for different periods, up to 14 days. The samples were characterized through XRD, DRIFT and SEM before and after bioactivity experiments. The overall results suggest the formation of a surface layer of consisting of hydroxyapatite, which was crystallized within seven days after in vitro experiments, leading to a suitable bioactivity. Moreover, the samples showed a glass network with high cohesion due to calcium addition, leading to materials with high corrosion resistance.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3474 ◽  
Author(s):  
Cao ◽  
Le ◽  
Pham ◽  
Nguyen ◽  
Hiromoto ◽  
...  

In this study, hydroxyapatite (HAp) coated Mg matrix composites were fabricated for biodegradable implant applications. Spark plasma sintering was employed to fabricate the Mg-10 wt% ZnO composite substrates. HAp was coated on the surface of the sintered composites and pure Mg by a chemical solution treatment. SEM and optical micrographs of coated samples showed that HAp grew homogeneously and formed a layer on the entire surface of both pure sintered Mg and Mg composites. The immersion and polarization test results demonstrated that the HAp coating significantly improved the corrosion resistance of the sintered composites. While the HAp coating layer is not effective in the improvement of the pure Mg substrate, cell culture test results revealed that the HAp coating improved cell adhesion and proliferation on the composites effectively through 72 h, while no cell could survive on the uncoated composites after 72 h. In addition, the corrosion tests and cell culture test results indicated that the composite with longer sintering time has better corrosion resistance and cell viability than those of the composite with shorter sintering time. The findings suggested that the HAp-coated Mg-10 wt% ZnO-2.5 h + 10 min composite is a high-potential candidate for biodegradable implant applications.


RSC Advances ◽  
2017 ◽  
Vol 7 (20) ◽  
pp. 12309-12317 ◽  
Author(s):  
Jixing Lin ◽  
Sertan Ozan ◽  
Khurram Munir ◽  
Kun Wang ◽  
Xian Tong ◽  
...  

A β type TTHZ alloy (Ti–40Ta–22Hf–11.7Zr) experienced various phase transitions during solution and aging treatments, and the different phases of the alloy significantly influenced its mechanical properties and corrosion behaviour.


2013 ◽  
Vol 765 ◽  
pp. 803-807
Author(s):  
Gaur Swati ◽  
Anand Sawroop Khanna ◽  
Raghuvir Kumar Singh Raman

In the present study, combinations of a phosphonato silane with a precursor, Methyltriethoxy silane (MTEOS) in various ratios were applied onto the alloy Mg-6Zn-Ca. The corrosion resistance of the coated and uncoated specimens in a modified simulated body fluid (m-SBF) was characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Results suggest that the silane coating significantly decreases the degradation rate of the magnesium alloy, indicating its potential to be used as a corrosion barrier for magnesium alloy temporary implants.


2007 ◽  
Vol 330-332 ◽  
pp. 533-536 ◽  
Author(s):  
Yi Kai Chen ◽  
Xue Bin Zheng ◽  
H. Ji ◽  
Chuan Xian Ding ◽  
S.W. Lee

Vacuum plasma sprayed (VPS) Ti coatings were deposited and their surface modification processes were performed by NaOH solution treatment and alkali-heat-calcification respectively. The simulated body fluid test indicated that apatite was formed on the surfaces of Ti coatings. A net-like structure was observed on the surfaces of Ti coatings treated by alkali-heat-calcification, whose bioactivity is much better than that treated by NaOH aqueous solution simply.


2011 ◽  
Vol 471-472 ◽  
pp. 325-330 ◽  
Author(s):  
K. Venkateswarlu ◽  
N. Rameshbabu ◽  
Arumugam Chandra Bose ◽  
V. Muthupandi ◽  
S. Subramanian

Nanostructured titania/hydroxyapatite (HA) composite layer was developed on commercially pure titanium (Cp Ti) implant material by plasma electrolytic processing (PEP) technique in order to improve its bioactivity and corrosion resistance under physiological conditions. The phases present in the developed composite layer were studied by X-ray diffraction (XRD) technique. The surface morphology and thickness of the composite layers were observed by scanning electron microscopy (SEM). The corrosion characteristics of the developed layer were studied by potentiodynamic polarization scan under simulated body fluid (7.4 pH Hanks solution) and simulated osteoclast (4.5 pH) conditions. The in-vitro bioactivity of the composite layers was studied by using Kokubu’s simulated body fluid (SBF) solution. The X-ray diffractograms reveal the presence of anatase TiO2 and HA phases in the developed layer. The SEM results confirm the pore-free morphology of the implant material surface and the thickness of the developed composite layer was observed to be 110 ± 5 µm for 12 min of PEP. The potentiodynamic polarization study shows an improved corrosion resistance and the in-vitro bioactivity test results indicate enhanced apatite forming ability of PEP treated Cp Ti surfaces compared to that of the untreated Cp Ti, under simulated body fluid conditions.


2010 ◽  
Vol 654-656 ◽  
pp. 2192-2195 ◽  
Author(s):  
Yun Cang Li ◽  
Mei Heng Li ◽  
Wang Yu Hu ◽  
Peter D. Hodgson ◽  
Cui E Wen

In this study, Mg-xCa (x = 0.5, 1.0, 2.0, 5.0, 10.0, 15.0 and 20.0 %, wt.%, hereafter) and Mg-1Ca-1Y alloys were investigated as new biodegradable bone implant materials. The compressive strength, ultimate strength and hardness of the Mg-Ca alloys increased, whilst the corrosion rate and biocompatibility decreased, with the increase of the Ca content in the Mg-Ca alloys; higher Ca content caused the Mg-Ca alloy to become brittle. Solutions of simulated body fluid (SBF) and modified minimum essential media (MMEM) with the immersion of Mg-xCa and Mg-1Ca-1Y alloys showed strong alkalisation. The yttrium addition to the Mg-Ca alloys does not improve the corrosion resistance of the Mg-1Ca-1Y alloy as expected compared to the Mg-1Ca alloy. It is suggested that Mg-Ca alloys with Ca additions less than 1.0 wt.% exhibited good biocompatibility and low corrosion rate.


2011 ◽  
Vol 287-290 ◽  
pp. 1970-1975
Author(s):  
Xin Yu Ye ◽  
Min Fang Chen ◽  
De Bao Liu ◽  
Meng Yang ◽  
Jun Wei

In order to improve the corrosion resistance, the samples made of Mg-Zn-Zr alloy were immersed in 20% or 40% hydrofluoric acid (HF) aqueous solutions for different intervals to prepare magnesium fluoride (MgF2) coating on the surface. By comparing the surface morphologies, the samples immersed in 20% HF solution for 6 h on which fine particles in nanoscale covered was selected for the further study. Immersion and electrochemical tests showed that the dense MgF2 coating would improve the corrosion resistance of Mg-Zn-Zr alloy. The corrosion current density (icorr) decreased from 2.10 μA·cm-2 to 0.05 μA·cm-2. The influence of HF treatment on the cytocompatibility was evaluated in vitro. There were significant differences in the cell number between the naked and coated samples after culturing for 3 and 5 days (p<0.05). All the results demonstrate that HF treatment is a promising approach to improve the corrosion resistance and in vitro biocompatibility of Mg-Zn-Zr alloy used as intravascular stents.


Sign in / Sign up

Export Citation Format

Share Document