scholarly journals Development of Modern Steels for Strain Based Design Pipe Lines and Simulation Results

2016 ◽  
Vol 854 ◽  
pp. 9-15
Author(s):  
Christoph Heering ◽  
Kirill Tokmakov ◽  
Ingo Schuster

Due to the exploration of gas and oil sources in remote regions with harsh environment, the pipe line designers are faced with the challenging conditions. Especially in the cases where displacement-controlled loads are the predominant design condition, such as ground movement, strain-based design is applied instead of stress-based design to build safer pipelines and to assure the integrity of the lines along their lifetimes. It requires steels to have a large strain hardening capacity, long uniform elongation, and good toughness to achieve a well-defined and sufficient plastic deformation. In order to fulfil the requirements, all the processing steps are supposed to be well designed, for example, the chemical composition, microstructural design, thermo-mechanical controlled process (TMCP) and heat treatment, etc. In general pipe line steel has a low carbon, high manganese content combined with a certain amount of micro-alloying elements as Nb, Ti and sometimes B. Using Thermo-mechanical rolling and cooling schedules excellent combinations of strength and toughness can be established. To successfully produce steel plates for strain based design pipe lines the actual heating rolling and cooling technologies must be developed further as well as the equipment to produce such steel. The paper gives an overview about modern plate mill equipment and new setup strategies for the production of heavy plates X70 to X100 as well as thethermo-dynamic simulations used during the development.

CORROSION ◽  
1958 ◽  
Vol 14 (8) ◽  
pp. 37-38

Abstract Recommended minimum characteristics of an asphalt wrapped underground pipe line coating system are given. Included are physical characteristics of primer, enamel and wrapping, testing methods for primer and enamel. 6.4.5


2014 ◽  
Vol 496-500 ◽  
pp. 392-395 ◽  
Author(s):  
Tao Zhang ◽  
Hua Xing Hou ◽  
Jun Ping Chen

The influence of Ti/N ratio on the effective boron and mechanical properties was investigated by analyzing data from low carbon boron alloyed bainitic steel plates. The result shows Ti/N ratio varies with effective boron value. Less than 50% effective boron was obtained when Ti/N ratio is below 3.3, nearly 90% effective boron is obtained when ratio Ti/N is more than 4; Adding enough Titanium is an effective and economic way to improve qualified ratio of bainitic steel plate. The Ti content between 0.010% and 0.030% does not have obvious effect on the toughness of the bainitic steel;


2014 ◽  
Vol 1082 ◽  
pp. 202-207 ◽  
Author(s):  
Shu Yan ◽  
Xiang Hua Liu

A low carbon steel was treated by quenching and partitioning (Q&P) process, and a detailed characterization of the microstructural evolution and testing of mechanical properties were carried out. The resulted mechanical properties indicate that with the partitioning time increasing, the tensile strength decreases rapidly first and then remains stable, and the total elongation increases first then decreases. The investigated steel subjected to Q&P process exhibits excellent products of strength and elongation (17.8-20.6 GPa•%). The microstructural evolution of martensite matrix during the partitioning step was observed, and the morphology and content of retained austenite were characterized. The working hardening behavior of the samples was analyzed, and the retained austenite with higher carbon content contributes to the uniform elongation more effectively.


1937 ◽  
Vol 4 (2) ◽  
pp. A68-A74
Author(s):  
G. B. Karelitz ◽  
J. H. Marchant

Abstract The authors present a method for the numerical computation of the end forces and couples in a three-dimensional pipe line. The method takes care of a pipe line with any number of straight parts connected by bends. A procedure of computation is also shown when parts of the pipe line are skewed. The ends of the line may be partially or completely constrained against rotation and translation. A construction for the analysis of stresses in the pipe bends is given. The method is illustrated by a sample computation of the end forces and couples in a steam main which is restrained against thermal expansion.


Sign in / Sign up

Export Citation Format

Share Document