Effect of Substitution of Crushed Waste Glass as Partial Replacement for Natural Fine and Coarse Aggregate in Concrete

2016 ◽  
Vol 866 ◽  
pp. 58-62 ◽  
Author(s):  
Oluwarotimi M. Olofinnade ◽  
Julius M. Ndambuki ◽  
Anthony N. Ede ◽  
David O. Olukanni

Reusing of waste glass in concrete production is among the attractive option of achieving waste reduction and preserving the natural resources from further depletion thereby protecting the environment and achieving sustainability. This present study examines the possible reuse of waste glass crushed into fine and coarse aggregate sizes as partial substitute for natural fine and coarse aggregate in concrete. The variables in this study is both the fine and coarse aggregate while the cement and water-cement ratio were held constant. The crushed glass was varied from 0 – 100% in steps of 25% by weight to replace the both the natural fine and coarse aggregate in the same concrete mix. Concrete mixes were prepared using a mix proportion of 1:2:4 (cement: fine aggregate: coarse aggregate) at water-cement ratio of 0.5 targeting a design strength of 20 MPa. Tests were carried out on total number of 90 concrete cube specimens of size 150 x 150 x150 mm and 90concrete cylinder specimens of dimension 100 mm diameter by 200 mm height after 3, 7, 14, 28, 42 and 90 days of curing. Test results indicated that the compressive and split tensile strength of the hardened concrete decreases with increasing waste glass content compared with the control. However, concrete mix made with 25% waste glass content compared significantly well with the control and can be suitably adopted for production of light weight concrete.

2017 ◽  
Vol 36 (3) ◽  
pp. 686-690
Author(s):  
NM Ogarekpe ◽  
JC Agunwamba ◽  
FO Idagu ◽  
ES Bejor ◽  
OE Eteng ◽  
...  

The suitability of burnt and crushed cow bones (BCCB) as partial replacement for fine aggregate in concrete was studied. The percentages of replacements of fine aggregates of 0, 10, 20, 30, 40 and 50%, respectively of BCCB were tested considering 1: 2: 4 and 1: 11/2 :3 concrete mix ratios. The cow bones were burnt for 50 minutes up to 92oC before being crushed. Ninety-six (96) concrete cubes of 1: 2: 4 mix ratio and ninety-six (96) concrete cubes of 1 : : 3 mix ratio measuring 150x150x150mm were tested for the compressive strength at 7, 14, 21 and 28 days respectively. The research revealed that the BCCB acted as a retarder in the concrete. Water-cement ratio increased with the increase in the percentage of the BCCB. The mixes of 1:2:4 and 1::3 at 28 days curing yielded average compressive strengths in N/mm2 ranging from 16.49 - 24.29 and 18.71 - 29.73, respectively. For the mix ratios of 1:2:4 and 1:: 3 at 28 days curing age,  it was observed that increase in the BCCB content beyond 40 and 50%, respectively resulted to the reduction of the average compressive strength below recommended minimum strength for use of concrete in structural works.http://dx.doi.org/10.4314/njt.v36i3.4


Author(s):  
A.O Adeyemi ◽  
M.A Anifowose ◽  
I.O Amototo ◽  
S.A Adebara ◽  
M.Y Olawuyi

This study examined the effect of varying water cement ratio on the compressive strength of concrete produced using palm kernel shell (PKS) as coarse aggregate at different replacement levels. The replacement levels of coarse aggregate with palm kernel shells (PKS) were 0%, 25%, 50%, and 100% respectively. PKS concrete cubes (144 specimens) of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14, 21 and 28 days respectively. A mix ratio of 1:2:4 was adopted with water-cement ratio of 0.45, 0.5, and 0.6 respectively while the batching was done by weight. Slump test was conducted on fresh concrete while compressive strength test was carried out on the hardened concrete cubes using a compression testing machine of 2000kN capacity. The result of tests on fresh concrete shows that the slump height of 0.45 water cement ratio (w/c) increases with an increase in PKS%. This trend was similar to 0.50 and 0.60 w/c. However, the compressive strength of concrete cube decreases with an increase in w/c (from 0.45 to 0.60) but increases with respect to curing age and also decreases with increase in PKS%. Concrete with 0.45 water-cement ratio possess the highest compressive strength. It was observed that PKS is not a good substitute for coarse aggregate in mix ratio 1:2:4 for concrete productions. Hence, the study suggest the use of chemical admixture such as superplasticizer or calcium chloride in order to improve the strength of palm kernel shells-concrete.


Author(s):  
Mustaque Hossain ◽  
James Koelliker ◽  
Hisham Ibrahim ◽  
John Wojakowski

The water-cement ratio of fresh concrete is recognized as the one factor that affects the strength and durability of an adequately compacted concrete mix. Although water-cement ratio is the predominant factor affecting strength of hardened concrete, currently no widely used, reliable method is available for measuring water-cement ratio in the field. A prototype device has been developed to measure the water-cement ratio of a plastic concrete mix. The method is based on the measurement of turbidity of water-cement slurry separated out of a concrete mixture by pressure sieving. Consistent results were obtained for air-entrained and non-air-entrained concrete. Statistical analyses of the test results have shown that this meter can measure the water-cement ratio of fresh concrete with an accuracy of ±0.01 on the water-cement ratio scale for a single test at a 90 percent confidence interval. The equipment will cost less than $10,000. If the method works as well in the field as it does in the laboratory, accurate determination of water-cement ratio could dramatically improve the ability of the concrete industry to ensure the quality of concrete construction.


2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


Disposal problem of waste materials and excessive demand on naturally available resources due to rapid urban development has opened possibilities for use of waste materials in construction industry. Many waste materials are used in concrete as replacement to cement, fine aggregate, coarse aggregate and reinforcement. Here review of some waste materials, whose ash is used as partial replacement to cement in concrete, is presented. Different properties of fresh and hardened concrete, when admixed with ash of waste materials are reviewed. Concrete containing sugar cane bagasse ash, ground nut shell ash, rice husk ash, saw dust ash, and tobacco waste ash are reviewed. After review, it is observed that further studies are required on all waste ashes replacing cement, which will reveal more potential on their usage in concrete. Concrete containing ash of waste materials attained demanded strength within 5% to 20% replacement.


Author(s):  
Suhaib Bakshi

Abstract: Compressive strength of concrete is the capacity of concrete to bear loads of materials or structure sans breaking or being deformed. Specimen under compression shrinks in size whilst under tension the size elongates. Compressive strength essentially gives concept about the properties of concrete. Compressive strength relies on many aspects such as water-cement ratio, strength of cement, calidad of concrete material. Specimens are tested by compression testing machine after the span of 7 or 28 days of curing. Compressive strength of the concrete is designated by the load on the area of specimen. In this research various proportions of such aggregate mixed in preparing M 30 grade and M 40 grade of Concrete mix and the effect is studied on its compressive strength . Several research papers have been assessed to analyze the compressive strength of concrete and the effect of different zones of sand on compressive strength are discussed in this paper. Keywords: Sand, Gradation, Coarse aggregate, Compressive strength


2013 ◽  
Vol 701 ◽  
pp. 12-16 ◽  
Author(s):  
Mohd Irwan Juki ◽  
Khairunnisa Muhamad ◽  
Mahamad Mohd Khairil Annas ◽  
Koh Heng Boon ◽  
Norzila Othman ◽  
...  

This paper describes the experimental investigation to develop the concrete mix design Nomograph for concrete containing PET as fine aggregate. The physical and mechanical properties were determined by using mix proportion containing 25%, 50% and 75% of PET with water cement ratio (w/c) 0.45, 0.55 and 0.65. The data obtained showed that the inclusion of PET aggregate reduce the strength performances of concrete. All the data obtained were combined into one single graph to develop a preliminary mix design nomograph for PET concrete. The nomograph consist of ; relationship between compressive strength and water cement ratio; relationship between splitting tensile strength water cement ratio; relationship between splitting tensile strength and PET percentage and relationship between compressive strength and PET percentage. The mix design nomograph can be used to assists in selecting the proper mix proportion parameters based on the criteria required.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
K. Senthil Kumar ◽  
K. Baskar

The fresh and hardened properties of concrete with E-waste plastic, that is, high impact polystyrene (HIPS), as a partial replacement for coarse aggregate were analyzed using response surface methodology (RSM). Face-centred central composite response surface design was used in this study. The statistical models were developed between the factors (HIPS and water cement ratio) and their response variables (slump, fresh density, dry density, compressive strength, spilt tensile strength, and flexural strength). The Design-Expert 9.0.3 software package was used to analyze the experimental values. The relationships were established and final mathematical models in terms of coded factors from predicted responses were developed. The effects of factors on properties for all variables were seen visually from the response surface and contour plot. Validation of experiments has shown that the experimental value closely agreed with the predicted value, which validates the calculated response surface models with desirability = 1. The HIPS replacement influenced all the properties of concrete than water cement ratio. Even though all properties show the decline trend, the experimented values and predicted values give a hope that the E-waste plastic (HIPS) can be used as coarse aggregate up to certain percentage of replacement in concrete which successively reduces the hazardous solid waste problem and conserves the natural resources from exhaustion.


Concrete is a Composite material which is composed of Cement, fine aggregate, coarse aggregate binded together with a definite proportion of water. Concrete is widely used in every single construction work around the world. Due to large scale construction activities using conventional coarse aggregate such as granite as a constructional material extreme reduction in the natural stone deposit has been encountered and is affecting the environment, hence causing ecology imbalance. In current situation of construction, price factor and the wide range of extraction and processing of materialsis matter of great concern for the people as well as environment. Therefore, introduction of alternate waste material in place of natural aggregate in concrete production not only protects environment but also make concrete a suitable, economical and environment friendly construction material. Different material like Coconut Shell and Fiber can also be used alternatively. In this project Coconut Shell and fiber are used as partial replacement for coarse aggregate as well as fine aggregate, respectively. To study characteristic properties of concrete 10% and 20% for coarse aggregate and 1%, and 2% for fine aggregate are replaced by its weight with coconut shell and fiber.


Sign in / Sign up

Export Citation Format

Share Document