Ion Exchange in Sodium Titanate Nanoribbons and its Application in Dye Photodegradation of Remazol Blue

2016 ◽  
Vol 869 ◽  
pp. 795-799 ◽  
Author(s):  
Ludyane Nascimento Costa ◽  
Francisco Xavier Nobre ◽  
Bartolomeu Cruz Viana Neto ◽  
José Milton Elias de Matos

This work addresses the main point, the synthesis of one-dimensional titanate nanostructures and their ion exchange with transition metals for application in photocatalysis. The catalysts tested in the photocatalytic process were titanate nanoribbons (NRTi) synthesized by hydrothermal method and ion exchanged with Sn2+. The structural and morphological analysis of the material was performed by XRD, Raman spectroscopy and TEM images, confirming the formation of the desired structures and the growth of SnO2 nanoparticles after the ion exchange process with average size smaller than 10 nm. The values of surface area were obtained by BET and showed a significant increment after the ion exchange process, making it favorable for application in photocatalysis. The NRTi was applied in the degradation of blue dye remazol, generating a total degradation in 120 minutes. The rate constants were calculated from the pseudo-first-order equation.

1996 ◽  
Vol 432 ◽  
Author(s):  
B. C. Bunker ◽  
C. H. F. Peden ◽  
R. J. Kirkpatrick ◽  
G. L. Turner

AbstractLocal structures of high surface area sodium titanate materials have been examined as a function of pH using solid state 17O nuclear magnetic resonance (NMR) spectroscopy. Using 17O NMR, it is possible to determine the relative populations of nonbridging oxygens as well as oxygens bridging between two, three, and four titanium atoms. Results show that protonation of ion exchange sites in titanate materials is not a simple ion exchange process but involves a repolymerization and restructuring of the titanate network. The observed structural changes are consistent with reported phase stabilities of titanates in water as well as with known hydrolysis and condensation reactions.


2020 ◽  
Vol 16 ◽  
Author(s):  
Reda M. El-Shishtawy ◽  
Abdullah M. Asiri ◽  
Nahed S. E. Ahmed

Background: Color effluents generated from the production industry of dyes and pigments and their use in different applications such as textile, paper, leather tanning, and food industries, are high in color and contaminants that damage the aquatic life. It is estimated that about 105 of various commercial dyes and pigments amounted to 7×105 tons are produced annually worldwide. Ultimately, about 10–15% is wasted into the effluents of the textile industry. Chitin is abundant in nature, and it is a linear biopolymer containing acetamido and hydroxyl groups amenable to render it atmospheric by introducing amino and carboxyl groups, hence able to remove different classes of toxic organic dyes from colored effluents. Methods: Chitin was chemically modified to render it amphoteric via the introduction of carboxyl and amino groups. The amphoteric chitin has been fully characterized by FTIR, TGA-DTG, elemental analysis, SEM, and point of zero charge. Adsorption optimization for both anionic and cationic dyes was made by batch adsorption method, and the conditions obtained were used for studying the kinetics and thermodynamics of adsorption. Results: The results of dye removal proved that the adsorbent was proven effective in removing both anionic and cationic dyes (Acid Red 1 and methylene blue (MB)), at their respective optimum pHs (2 for acid and 8 for cationic dye). The equilibrium isotherm at room temperature fitted the Freundlich model for MB, and the maximum adsorption capacity was 98.2 mg/g using 50 mg/l of MB, whereas the equilibrium isotherm fitted the Freundlich and Langmuir model for AR1 and the maximum adsorption capacity was 128.2 mg/g. Kinetic results indicate that the adsorption is a two-step diffusion process for both dyes as indicated by the values of the initial adsorption factor (Ri) and follows the pseudo-second-order kinetics. Also, thermodynamic calculations suggest that the adsorption of AR1 on the amphoteric chitin is an endothermic process from 294 to 303 K. The result indicated that the mechanism of adsorption is chemisorption via an ion-exchange process. Also, recycling of the adsorbent was easy, and its reuse for dye removal was effective. Conclusion: New amphoteric chitin has been successfully synthesized and characterized. This resin material, which contains amino and carboxyl groups, is novel as such chemical modification of chitin hasn’t been reported. The amphoteric chitin has proven effective in decolorizing aqueous solution from anionic and cationic dyes. The adsorption behavior of amphoteric chitin is believed to follow chemical adsorption with an ion-exchange process. The recycling process for few cycles indicated that the loaded adsorbent could be regenerated by simple treatment and retested for removing anionic and cationic dyes without any loss in the adsorbability. Therefore, the study introduces a new and easy approach for the development of amphoteric adsorbent for application in the removal of different dyes from aqueous solutions.


1986 ◽  
Vol 20 (9) ◽  
pp. 1177-1184 ◽  
Author(s):  
Arup K. Sengupta ◽  
Dennis Clifford ◽  
Suresh Subramonian

1985 ◽  
Vol 60 ◽  
Author(s):  
J. D. Barrie ◽  
D. L. Yang ◽  
B. Dunn ◽  
O. M. Stafsudd

AbstractIon exchanged ß“-aluminas display a number of interesting optical properties which suggest that the material is well suited for application as a solid state laser host. Small platelets of Nd3+ Ion exchanged β“-alumina exhibit laser action with gain coefficients many times greater than YAG. The versatility of the ion exchange process enables one to form a wide variety of compounds with different active ions and concentrations, thereby allowing the study of many different effects within a single host crystal.


2012 ◽  
Vol 430-432 ◽  
pp. 941-948 ◽  
Author(s):  
Yong Sheng Shi ◽  
Yu Zhen Shi ◽  
Lin Wang

Studies have been carried out on removal of Se(Ⅵ) from raw water by ion exchange process. The experiment results indicate that employment of strong-base anion exchange resin of 201×7 can receive a desirable result for Se removal. It is particularly true that the removal rate of Se(Ⅵ) can achieve more than 96% when the Se(Ⅵ) concentration in raw water is 100μg/L. This allows selenium concentration of the supply water in full conformity to the quality standard currently available for drinking water. Ion exchange process for Se removal has been proved to be competent for its efficiency, cost effectiveness and easy operation.


Sign in / Sign up

Export Citation Format

Share Document