Synthesis of ZnO Nanoparticles Doped with Cobalt: Influence of Doping on the Magnetic and Fluorescent Properties

2016 ◽  
Vol 869 ◽  
pp. 982-986
Author(s):  
Henrique J. Sugahara ◽  
Etelino F. de Melo ◽  
Celso P. de Melo ◽  
Kleber G.B. Alves

We have investigated the influence of cobalt doping on the luminescent and magnetic properties of ZnO nanoparticles prepared by co-precipitation. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and by use of a vibrating sample magnetometer (VSM). XRD analyses revealed a standard ZnO wurtzite crystal structure and showed that the cobalt doped ZnO nanoparticles (ZnO:Co_NPs) were synthetized without impurities. The calculation based on the XRD shows the average crystallite sizes of ZnO to be in the 8-11 nm range. TEM images of ZnO and ZnO:Co indicated that these nanoparticles are nearly uniformly spherical with a diameter of about 10 - 15 nm. The PL spectra exhibited high [low] intensity in the UV [visible] region. While the PL shows a decreasing intensity with increasing doping doses, the peak at 544nm is not present in the cobalt-doped zinc oxide, and a the peak at 378 nm shifts to 390nm. The VSM measurement confirmed the presence of ferromagnetism and we observed an increase in the values of the saturation magnetization with increasing Co concentration.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Honghui Teng ◽  
Shukun Xu ◽  
Dandan Sun ◽  
Ying Zhang

Fe-doped TiO2nanotubes (Fe-TNTs) have been prepared by ultrasonic-assisted hydrothermal method. The structure and composition of the as-prepared TiO2nanotubes were characterized by transmission electron microscopy, X-ray diffraction, and UV-Visible absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of MO under visible light. The UV-visible absorption spectra of the Fe-TNT showed a red shift and an enhancement of the absorption in the visible region compared to the pure TNT. The Fe-TNTs were provided with good photocatalytic activities and photostability and under visible light irradiation, and the optimum molar ratio of Ti : Fe was found to be 100 : 1 in our experiments.


NANO ◽  
2015 ◽  
Vol 10 (05) ◽  
pp. 1550074 ◽  
Author(s):  
Chong Yang ◽  
Limei Tang ◽  
Qingsong Li ◽  
Ailing Bai ◽  
Yanqiu Wang ◽  
...  

Monodisperse colloidal zinc oxide ( ZnO ) nanospheres with a narrow size distribution were synthesized via a developed two-stage solution method. We controlled the size of the as-synthesized ZnO nanoparticles by varying the amount of ZnO /ethanol suspension added. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the diameter of the as-synthesized ZnO nanoparticles was in the range of 60–140 nm with a polydispersity index less than 5%. On high-resolution TEM images, we clearly observed that the ZnO nanospheres were actually composed of tiny ZnO subunits, several nanometers in size. Powder X-ray diffraction and TEM-selected area electron diffraction analysis showed that the spheres consisted of polycrystalline nanoparticles. The size of the subunits, which was confirmed by ultraviolet (UV)-visible spectroscopy, increased as the amount of ZnO /ethanol suspension added was decreased. A UV emission at about 374 nm was observed, and this emission of ZnO nanoparticles is found to depend on particle size due to the confinement effect. A red emission at about 651 nm, which has been reported for undoped ZnO , appeared due to the excess oxygen on the particles from O – H or C = O groups. The intensity of the red emission increased as the relative oxygen content increased. The formation mechanism of such ZnO nanospheres was also considered.


2020 ◽  
Vol 14 (2) ◽  
pp. 161-167
Author(s):  
Patrícia Pimentel ◽  
Jairo Dutra ◽  
Maria Câmara ◽  
Gerbeson Dantas ◽  
Osmar Bagnato ◽  
...  

In this work, we synthesized oxides with perovskite LnFeO3 type structure (where Ln = La, Pr and Nd), aiming their use as ceramic pigments. The as-synthesized powders, prepared by gelatin method, were thermally treated at 600 and 800 ?C to obtain the perovskite phase. The characterization was performed using X-ray diffraction technique, followed by Rietveld refinement, scanning and transmission electron microscopy, spectroscopy in the UV-Visible region and CIE Lab colorimetry. The calcined powders were also used for fabrication of ceramic pieces to evaluate the colour when 2 wt.% of the powders was added into a transparent glaze. The pigments presented shades ranging from pale brown for the powdered samples to yellowish when applied in the glazes.


2018 ◽  
Vol 10 (6) ◽  
pp. 224 ◽  
Author(s):  
Manyasree D. ◽  
Kiranmayi P. ◽  
Venkata R Kolli

Objective: In the present study the antibacterial activity of zinc oxide (ZnO) nanoparticles was investigated against gram negative (Escherichia coli and Proteus vulgaris) and gram positive (Staphylococcus aureus and Streptococcus mutans) organisms.Methods: The synthesis of ZnO nanoparticles was carried out by co-precipitation method using zinc sulfate and sodium hydroxide as precursors. These nanoparticles were characterized by XRD (X-Ray Diffraction), FTIR (Fourier Transform Infrared Radiation), UV-Visible spectroscopy and SEM (Scanning Electron Microscope) with EDX (Energy Dispersive X-ray analysis). As well as antibacterial activity and minimum inhibitory concentration of the nanoparticles were carried out by agar well diffusion method and broth dilution method respectively against gram negative (Escherichia coli and Proteus vulgaris) and gram positive (Staphylococcus aureus and Streptococcus mutans) bacteria.Results: The average crystallite size of ZnO nanoparticles was found to be 35 nm by X-ray diffraction. The vibration bands at 450 and 603 cm-1 which were assigned for ZnO stretching vibration were observed in FTIR spectrum. The optical absorption band at 383 nm was obtained from UV-Visible spectrum. Spherical shape morphology was observed in SEM studies. The antibacterial assay clearly expressed that E. coli showed a maximum zone of inhibition (32±0.20 mm) followed by Proteus vulgaris (30±0.45 nm) at 50 mg/ml concentration of ZnO nanoparticles.Conclusion: Zinc oxide nanoparticles have exhibited good antibacterial activity with gram negative bacteria when compared to gram positive bacteria.


2015 ◽  
Vol 659 ◽  
pp. 211-215
Author(s):  
Parncheewa Udomsap ◽  
Somsak Supasitmongkol

The effect of gallium-promoted copper-based catalysts has been investigated in connection with the characteristic of the active copper phase. CuO-ZnO-Ga2O3catalysts with different gallium loadings were prepared using oxalate co-precipitation method. The effects of gallium loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and temperature-programmed reduction (TPR). The dispersion and metal area of copper were also determined by dissociative nitrous (N2O) adsorption technique conducted on a metal dispersion analyzer (BELCAT). The TPR profiles showed that the presence of two different reduction regions in the CuO-ZnO catalysts can be attributed to the reduction of highly dispersed copper oxide species (reduced at 246 °C) and bulk-like CuO (reduced at above 390 °C). By contrast, the only low-temperature reduction peak was presented in the TPR profiles after the Ga2O3loading was higher than 4 wt%. With the same molar ratio (Cu/Zn = 2:1), the reducibility of CuO-ZnO-Ga2O3was found to be more facile than CuO-ZnO due to the lower copper oxide crystallite sizes of gallium-promoted catalysts. Higher Ga2O3loadings resulted in an increase in both copper dispersion and metal surface area of all the catalysts studied in good agreement with the reduction behaviors in the TPR profiles, although all the gallium-promoted catalysts were slightly different for the reducibility.


2020 ◽  
Vol 19 (05) ◽  
pp. 1950038
Author(s):  
Sayantani Das ◽  
Md Sariful Sheikh ◽  
Rajesh Mukherjee ◽  
Alo Dutta ◽  
T. P. Sinha

ZnTe semiconductor nanoparticles have been prepared by soft chemical route using mercaptoethanol as capping agent to arrest the agglomeration. The structural investigations performed by X-ray diffraction technique show that the prepared samples have cubic structure. Average crystallite sizes of the prepared nanomaterial are estimated by Debye–Scherrer’s equation. The particle size of the synthesized material is estimated by transmission electron microscope (TEM). UV-visible absorption spectra gives the idea of the band gap of the sample using Tauc plot. The Raman spectroscopy measurements are performed to know the different vibrational modes of ZnTe. The impedance spectroscopy is applied to investigate the room temperature dielectric relaxation of the prepared samples in the frequency range from 100[Formula: see text]Hz to 1.1[Formula: see text]MHz.


2014 ◽  
Vol 1081 ◽  
pp. 138-141
Author(s):  
Xiao Liu ◽  
Zheng Guan ◽  
Hong Ling Liu ◽  
Jun Hua Wu ◽  
Xian Hong Wang ◽  
...  

The polymer-laced Cu-ZnO nanoparticles were successfully synthesized by one-pot non-aqueous nanoemulsion method with the use of PEO-PPO-PEO as the surfactant, C14H29CH(OH)CH2OH as the reducing agent, octyl ether as the solvent, Zn (acac)2 and Cu (acac)2 as precursors. The Morphology and structure of nanoparticles were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). UV-visible absorption spectroscopy (UV-vis) and photoluminescence spectrometry (PL) were employed to valuate the optical properties of the nanoparticles. The Cu-ZnO nanoparticles with well defined optical properties are promising for optical, catalytic and biomedical applications.


2015 ◽  
Vol 7 (2) ◽  
pp. 1393-1403
Author(s):  
Dr R.P VIJAYALAKSHMI ◽  
N. Manjula ◽  
S. Ramu ◽  
Amaranatha Reddy

Single crystalline nano-sized multiferroic BiFeO3 (BFO) powders were synthesized through simple chemical co-precipitation method using polyethylene glycol (PEG) as capping agent. We obtained pure phase BiFeO3 powder by controlling pHand calcination temperature. From X-ray diffraction studies the nanoparticles were unambiguously identified to have a rhombohedrally distorted perovskite structure belonging to the space group of R3c. No secondary phases were detected. It indicates single phase structure. EDX spectra indicated the appearance of three elements Bi, Fe, O in 1:1:3. From the UV-Vis diffuse reflectance spectrum, the absorption cut-off wavelength of the BFO sample is around 558nm corresponding to the energy band gap of 2.2 eV. The size (60-70 nm) and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM).   Linear M−H behaviour and slight hysteresis at lower magnetic field is observed for BiFeO3 nanoparticles from Vibrating sample magnetometer studies. It indicates weak ferromagnetic behaviour at room temperature. From dielectric studies, the conductivity value is calculated from the relation s = L/RbA Sm-1 and it is around 7.2 x 10-9 S/m.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


Sign in / Sign up

Export Citation Format

Share Document