Hot Deformation of Martensitic and Supermartensitic Stainless Steels

2016 ◽  
Vol 870 ◽  
pp. 259-264 ◽  
Author(s):  
A.M. Akhmed'yanov ◽  
S.V. Rushchits ◽  
M.A. Smirnov

The deformation behavior of supermartensitic and martensitic stainless steels was investigated through compression test using Gleeble-3800 thermo-mechanical simulator within the temperature range of 900 – 1200 оС and the strain rates range of 0.01 – 10 s-1. The results showed that the flow stress and the peak strain increase with the drop in the deformation temperature and the rise in the strain rate. Flow stress of SMS steel exceeds flow stress of MS steel for same regimes of deformation. The difference in flow stress increases with the increase in Zener-Hollomon parameter, but does not exceed 15 MPa. The critical deformation, required to start dynamic recrystallization, for supermartensitic stainless steel is slightly lower than for martensitic stainless steel. The hot deformation activation energy of steels is also investigated, their values are similar and equal to 432 and 440 kJ/mol for MS and SMS steel, respectively.

2012 ◽  
Vol 715-716 ◽  
pp. 115-121
Author(s):  
Hai Wen Luo ◽  
Xu Dong Fang ◽  
Rui Zhen Wang ◽  
Zhan Yin Diao

Dynamic recrystallization was studied for the stainless steels with nitrogen contents of 0.56% to 1.08% during hot deformation at temperatures of 900~1200 with strain rates ranging from 0.003 to 42 s-1. It was found that flow stress could increase remarkably with increasing nitrogen content. Flow curves during the deformation by 0.1~42/s at temperatures of 900~1200°C show a single peak, indicating the occurrence of dynamic recrystallization during deformation. The peak strain seems to decrease with increasing N content, suggesting that higher content of N facilitates dynamic recrystallization. The quenched microstructures were analyzed by optical microscopy, EBSD and TEM. The recrystallized grain sizes on the quenched specimens were measured and its dependence on temperature and strain rate was analyzed. At high temperature, continuously dynamically recrystallized microstructures were observed; whilst at low temperature, necklace-like partially recrystallized microstructures were found. Key words: High nitrogen stainless steel; dynamic recrystallization; stress-strain curves


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Weiqi Kang ◽  
Yi Yang ◽  
Sheng Cao ◽  
Lei Li ◽  
Shewei Xin ◽  
...  

The hot deformation behavior of a new Al–Mn–Sc alloy was investigated by hot compression conducted at temperatures from 330 to 490 °C and strain rates from 0.01 to 10 s−1. The hot deformation behavior and microstructure of the alloy were significantly affected by the deformation temperatures and strain rates. The peak flow stress decreased with increasing deformation temperatures and decreasing strain rates. According to the hot deformation behavior, the constitutive equation was established to describe the steady flow stress, and a hot processing map at 0.4 strain was obtained based on the dynamic material model and the Prasad instability standard, which can be used to evaluate the hot workability of the alloy. The developed hot processing diagram showed that the instability was more likely to occur in the higher Zener–Hollomon parameter region, and the optimal processing range was determined as 420–475 °C and 0.01–0.022 s−1, in which a stable flow and a higher power dissipation were achieved.


2011 ◽  
Vol 460-461 ◽  
pp. 802-805
Author(s):  
Nan Hai Hao ◽  
Shao Wei Pan

The knowledge of the flow behavior of metals during hot deformation is of great importance in determining the optimum forming conditions. In this paper, the flow stress of 00Cr17Ni14Mo2 (ANSI 316L) austenitic stainless steel in elevated temperature is measured with compression deformation tests. The temperatures at which the steel is compressed are 800-1100°C with strain rates of 0.01-1s-1. A mathematical regression model is proposed to describe the flow stress and the validation of the model is conducted also. The proposed model can be used to predict the corresponding flow stress-strain response of 00Cr17Ni14Mo2 stainless steel in elevated temperature for the numerical simulation and design of forming process.


2014 ◽  
Vol 788 ◽  
pp. 45-51
Author(s):  
Yong Biao Yang ◽  
Zhi Min Zhang ◽  
Feng Li Ren ◽  
Qiang Wang

The elevated temperature flow stress behavior of Mg-9Gd-2.5Y-1Nd-0.5Zr magnesium alloy was carried out by Gleeble-1500 thermal mechanical simulator in the temperature range of 460-520°C and in strain rates of 0.0005~1s-1 at a strain of 0.6. The optical microscopy was used for microstructure characterization. The results showed that the flow stress increases with increasing strain rates and decreasing temperature. All the deformed magnesium alloy specimens show a dynamic recovery characters in the temperature range from 460~500°C, and show dynamic recrystallization characters at 520°C. The flow stress of this alloy can be represented by Zener-Hollomon parameter function, and values of related parameters A, α and n, are 2.24×1013s-1、0.027MPa-1 and 2.93, respectively. Its activation energy for hot deformation Q is 212.6kJ/mol.


Author(s):  
B. F. Luan ◽  
R. S. Qiu ◽  
Z. Zhou ◽  
K. L. Murty ◽  
J. Zhou ◽  
...  

Hot deformation characteristics of forged and β-quenched Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr (N18 alloy) in the temperature range 625–950°C and in the strain rate range 0.005–5 s−1 have been studied by uniaxial compression testing of Gleeble 3500. For this study, the approach of processing maps has been adopted and their interpretation done using the Dynamic Materials Model (DMM). Based on a series of true stress-true strain curves on various temperatures and strain rates, the flow stress has been summarized and both the strain rate sensitivity index (m) and deformation activation energy (Q) have been calculated by the constitutive equations that flow stress and the relationship of Z parameter and flow stress have been established subsequently. Furthermore, the efficiency of power dissipation (⬜) given by [2m/(m+1)] and improved by Murty has been plotted as a function of temperature and strain rate to obtain different processing maps at different true strain rates ranging from 0.1–0.7. Subsequently, the microstructures of the specimens after compression testing were characterized by electron channeling contrast (ECC) imaging techniques used an FEI Nova 400 field emission gun scanning electron microscopy (FEG-SEM). The results showed that: (i) The hyperbolic sine constitutive equation can describe the flow stress behavior of zirconium alloy, and the deformation activation energy and flow stress equation were calculated under the different temperature stages which insists that the deformation mechanism is not dynamic recovery. (ii) The hot processing maps and its validation were analyzed, which indicated that the DMM theory was reliable and could be adopted as useful tool for optimizing hot workability of Zr. The optimum parameters for extrusion and hammer forging were revealed on the processing maps of 830–950°C, 0.048–2.141 s−1 and 916–950°C, 2.465–5 s−1. (iii) The microstructure of the ingot exhibits a typical lamellar Widmanstatten structure. Under the different strain rates, the grains formed by dynamic recrystallization existed normally in the central zone of the compression samples while the no uniformity of grain size increased with the increasing of strain rate. Meanwhile, due to the dynamic recrystallization as a thermal activation process, the grains size and uniformity increased with the increasing of temperature. In brief, microstructure analysis showed that continuous dynamic recrystallization and geometric dynamic recrystallization operated concurrently during the isothermal compressive deformation.


2011 ◽  
Vol 415-417 ◽  
pp. 1147-1152 ◽  
Author(s):  
Yin Ben Han ◽  
Zhuo Liang Li ◽  
Ge Zhou ◽  
Fu Rong Cao ◽  
Hua Ding ◽  
...  

The hot deformation characteristics of Al-12.7Si-0.7Mg alloy were investigated on an Instron5500 electronic universal testing machine at strain rates ranging from 1.67×10-4 s-1 to 1.67×10-3 s-1 and testing temperatures ranging from 460 °C to 520 °C. The results show that strain rate had a great effect on the flow stress. The flow stress increased with increasing the strain rate. The true stress-strain curves of the Al-12.7Si-0.7Mg alloy were obtained, and the strain rate sensitivity and hot deformation parameters of deformation activation energy were calculated. The hot deformation constitutive equation with hyperbolic sine form was also obtained. The test calculations demonstrate that the constitutive equation describes the deformation features of the Al-12.7Si-0.7Mg alloy well.


2012 ◽  
Vol 602-604 ◽  
pp. 2006-2010
Author(s):  
Fei Zhao ◽  
Yan Yan ◽  
Yong Hai Ren

The hot deformation behavior of CL60 rail wheel steel has been studied by employing both processing maps and microstructural observations. Tests are performed at temperatures of 800—1100°C and strain rates of 0.1s-1—5s-1 and the flow stress data obtained from the tests are used to develop processing maps. The microstructural evolution of deformed samples is also examined on the basis of optical microscopic observations. The result indicates that under experimental conditions this alloy shows dynamic recrystallization(RDX) characteristics during hot compression deformation. Both deformation temperatures and strain rates have obvious influence on flow stress and its corresponding peak strain, which increase gradually with decreasing temperature and increasing strain rate. RDX occurred at higher temperature and lower strain rate.


2013 ◽  
Vol 634-638 ◽  
pp. 1740-1745
Author(s):  
Bo Li ◽  
Qing Lin Pan ◽  
Chen Li ◽  
Yan Fang Song ◽  
Zhi Ye Zhang

The flow behavior of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation was studied by thermal simulation test at strain rate of 0.001 to 10s-1 and deformation temperature of 340 to 500°C on the Gleeble-1500 thermal mechanical simulator. The results show that the flow stress increases with increasing strain rate, and decreases with increasing deformation temperature. The flow stress of the alloy during the elevated temperature deformation can be represented by a Zener-Hollomon parameter with the inclusion of the Arrhenius term. The values of A, n, α in the analytical expression of flow stress are fitted to be 1.49×1010s−1, 7.504 and 0.0114MPa−1, respectively. The hot deformation activation energy of the alloy during hot deformation is 150.25kJ/mol.


2015 ◽  
Vol 817 ◽  
pp. 406-409
Author(s):  
Gan Lin Xie ◽  
An He ◽  
Xiao Ya Yang ◽  
Hai Long Zhang ◽  
Xi Tao Wang

In this study, the hot deformation experiments of 316LN stainless steel under various deformation temperature and various strain rates were conducted on a Gleeble thermal simulator. The true stain and true stress data were obtained and the Arrhenius-type constitutive model was developed, which can be used to accurately predict the flow stress of the studied steel under certain deformation conditions.


2007 ◽  
Vol 546-549 ◽  
pp. 1061-1064 ◽  
Author(s):  
Guang Jie Huang ◽  
Qing Liu ◽  
Ling Yun Wang ◽  
Xiao Hui Yin

The dynamic recrystallization characteristic of 3104 alloy has been investigated by isothermal compression deformation at temperatures from 573K to 773K under constant strain rates ranges from 10-3s-1 to 1s-1. It was shown that the form of flow stress curves were very sensitive to temperature and strain rate. At high temperatures and low strain rates, dynamic recrystallization of 3104 alloy deformation occured. The critical value for dynamic recrystallization start was determined from an inflection point that was observed in the plot of work hardening rate vs. flow stress and verified metallograhically based on quenching samples interrupted during deformation. In the experimental domain studied, the ratio of the critical strain for the initiation of dynamic recrystallization to that of the peak strain falled in the range 0.4-0.6. Furthermore, the dependence of εc on Zener-Hollomon parameter( Z) has been developed.


Sign in / Sign up

Export Citation Format

Share Document