Constitutive Equation of an Al-12.7Si-0.7Mg Alloy in Superplastic Deformation

2011 ◽  
Vol 415-417 ◽  
pp. 1147-1152 ◽  
Author(s):  
Yin Ben Han ◽  
Zhuo Liang Li ◽  
Ge Zhou ◽  
Fu Rong Cao ◽  
Hua Ding ◽  
...  

The hot deformation characteristics of Al-12.7Si-0.7Mg alloy were investigated on an Instron5500 electronic universal testing machine at strain rates ranging from 1.67×10-4 s-1 to 1.67×10-3 s-1 and testing temperatures ranging from 460 °C to 520 °C. The results show that strain rate had a great effect on the flow stress. The flow stress increased with increasing the strain rate. The true stress-strain curves of the Al-12.7Si-0.7Mg alloy were obtained, and the strain rate sensitivity and hot deformation parameters of deformation activation energy were calculated. The hot deformation constitutive equation with hyperbolic sine form was also obtained. The test calculations demonstrate that the constitutive equation describes the deformation features of the Al-12.7Si-0.7Mg alloy well.

2015 ◽  
Vol 816 ◽  
pp. 810-817
Author(s):  
Yong Biao Yang ◽  
Zhi Min Zhang ◽  
Xing Zhang

The hot deformation behaviors of Aluminum alloy C919 were studied in the present investigation. The hot compression tests for C919 were carried out in the temperature range of 350°C~470°C and strain rates range of 0.001s-1~1s-1 using GLEEBLE-1500 thermal simulate testing machine. Optical microscopy (OM) was used for the microstructure characterization. The experimental results showed that the flow stress of C919 aluminum alloy decreased with increasing temperature and decreasing strain rates and the flow stress curves tended to increase at a strain rate of 1s-1 with increasing strain, while the flow stresses kept with increasing strain at lower strain rate. The alloys were more prone to dynamic recrystallization with decreasing strain rates during hot deformation. The hot compression behavior of C919 aluminum alloy can be described as hyperbolic sine function corrected Arrhenius relation. The processing maps for the alloy were built at a strain of 0.6. The instability deformation domain occurred at temperatures range from 350°C and 380°C and at a strain rate of 0.1-1s-1. Based on the processing maps and microstructure observations, the optimum hot-working parameters were determined to be at a temperature of 470°C in the strain rate range from 0.1-0.01s−1 for the C919 aluminum alloy.


Author(s):  
B. F. Luan ◽  
R. S. Qiu ◽  
Z. Zhou ◽  
K. L. Murty ◽  
J. Zhou ◽  
...  

Hot deformation characteristics of forged and β-quenched Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr (N18 alloy) in the temperature range 625–950°C and in the strain rate range 0.005–5 s−1 have been studied by uniaxial compression testing of Gleeble 3500. For this study, the approach of processing maps has been adopted and their interpretation done using the Dynamic Materials Model (DMM). Based on a series of true stress-true strain curves on various temperatures and strain rates, the flow stress has been summarized and both the strain rate sensitivity index (m) and deformation activation energy (Q) have been calculated by the constitutive equations that flow stress and the relationship of Z parameter and flow stress have been established subsequently. Furthermore, the efficiency of power dissipation (⬜) given by [2m/(m+1)] and improved by Murty has been plotted as a function of temperature and strain rate to obtain different processing maps at different true strain rates ranging from 0.1–0.7. Subsequently, the microstructures of the specimens after compression testing were characterized by electron channeling contrast (ECC) imaging techniques used an FEI Nova 400 field emission gun scanning electron microscopy (FEG-SEM). The results showed that: (i) The hyperbolic sine constitutive equation can describe the flow stress behavior of zirconium alloy, and the deformation activation energy and flow stress equation were calculated under the different temperature stages which insists that the deformation mechanism is not dynamic recovery. (ii) The hot processing maps and its validation were analyzed, which indicated that the DMM theory was reliable and could be adopted as useful tool for optimizing hot workability of Zr. The optimum parameters for extrusion and hammer forging were revealed on the processing maps of 830–950°C, 0.048–2.141 s−1 and 916–950°C, 2.465–5 s−1. (iii) The microstructure of the ingot exhibits a typical lamellar Widmanstatten structure. Under the different strain rates, the grains formed by dynamic recrystallization existed normally in the central zone of the compression samples while the no uniformity of grain size increased with the increasing of strain rate. Meanwhile, due to the dynamic recrystallization as a thermal activation process, the grains size and uniformity increased with the increasing of temperature. In brief, microstructure analysis showed that continuous dynamic recrystallization and geometric dynamic recrystallization operated concurrently during the isothermal compressive deformation.


2013 ◽  
Vol 747-748 ◽  
pp. 569-574 ◽  
Author(s):  
Yue Wang ◽  
Zhou Li ◽  
Wen Yong Xu ◽  
Hua Yuan ◽  
Na Liu ◽  
...  

The hot deformation behaviors of spray formed superalloy GH738 were investigated by using of Gleeble-3500 simulator in the temperature range of 950~1200, with a strain rate of 0.13~6.5s-1 and reduction of 50%. The corresponding flow curves were determined and hot deformed microstructures were observed. The results showed that the flow stress decreased with increasing deformation temperature or decreasing strain rate. A full dynamic recrystallization microstructures with fine-equiaxed grains were obtained at the temperature of 1100~1150 and strain rate of 2.6~6.5s-1. The hot deformation activation energy Q was 580.81kJ.mol-1, and the constitutive equation was derived by means of linear regression.


2013 ◽  
Vol 554-557 ◽  
pp. 1224-1231 ◽  
Author(s):  
Cecilia Poletti ◽  
Martina Dikovits ◽  
Javier Ruete

Low alloyed steels produced by continuous casting are thermomechanically treated to achieve final high mechanical properties, meaning a good combination of strength and toughness. The hot deformation mechanisms of a micro-alloyed steel containing up to 0.1wt% of V is studied by means of hot compression tests using a Gleeble®3800 device. Austenitization of samples is carried out at 1150°C during 2 minutes followed by cooling to the deformation temperature at 1Ks-1in the range of 750 – 1150°C. The studied strain rate range is from 0.01 to 80 s-1and the total true strain achieved is of 0.7. In situ water quenching is applied after the deformation to freeze the microstructure and avoid any post dynamic effect. The Ar3temperature is determined by dilatometry experiments to be 725°C for the used cooling rate. The stress values obtained from the compression tests are evaluated at different strains to determine the strain rate sensitivity and flow instability maps and thus, to predict the formability of the material in the range of studied deformation parameters. These maps are correlated to the microstructure at specific deformation parameters.


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 119 ◽  
Author(s):  
Houyi Li ◽  
Lingling Fan ◽  
Mingyang Zhou ◽  
Youlong Zhou ◽  
Kuan Jiang ◽  
...  

The hot deformation test of the nano silicon carbide (nano-SiC) and carbon nano tubes (CNT) hybrid-reinforced AZ80 matrix composite was performed at compression temperatures of 300–450 °C and strain rates of 0.0001–1 s−1. It could be observed that the flow stress of the nanocomposite rose with the reduction of deformation temperature and the increase of strain rate. The hot deformation behaviors of the composite could be described by the sine-hyperbolic Arrhenius equation, and deformation activation energy (Q) was calculated to be 157.8 kJ/mol. The Q values of the extruded nanohybrid/AZ80 composite in this study and other similar studies on extruded AZ80 alloys were compared in order to analyze the effect of the addition of reinforcement, and the effects of deformation conditions on activation energy were analyzed. Finally, the compression microstructure in an unstable condition was carefully analyzed, and results indicated that the phenomenon of local instability was easy to occur at the compression specimen of the nanohybrid/AZ80 composite under deformation conditions of low temperature with high strain rate (300 °C, 0.1–0.01 s−1), and high temperature with low strain rate (450 °C, 0.0001 s−1).


2013 ◽  
Vol 17 (5) ◽  
pp. 1523-1528
Author(s):  
Bao-Hua Jia ◽  
Wei-Dong Song ◽  
Hui-Ping Tang ◽  
Jian-Guo Ning

Isothermal compression tests of TC18 titanium alloy at the deformation temperatures ranging from 25?C to 800?C and strain rate ranging from 10-4 to 10-2 s-1 were conducted by using a WDW-300 electronic universal testing machine. The hot deformation behavior of TC18 was characterized based on an analysis of the true stress-true strain curves of TC18 titanium alloy. The curves show that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the strain rate play an important role in the flow stress when increasing the temperatures. By taking the effect of strain into account, an improved constitutive relationship was proposed based on the Arrhenius equation. By comparison with the experimental results, the model prediction agreed well with the experimental data, which demonstrated the established constitutive relationship was reliable and can be used to predict the hot deformation behavior of TC18 titanium alloy.


2016 ◽  
Vol 684 ◽  
pp. 35-41 ◽  
Author(s):  
S.V. Rushchits ◽  
E.V. Aryshensky ◽  
S.M. Sosedkov ◽  
A.M. Akhmed'yanov

The deformation behavior of 1565ch alloy under the plane-strain conditions in the temperature range of 350–490 оС and strain rates range of 0,1–10 s-1 is studied. The expression for steady flow stress as the functions of temperature of deformation and strain rate is obtained. It is established that 1565ch alloy with zirconium addition shows higher strain resistance and less tendency to dynamic and static recrystallization than AMg6.


2017 ◽  
Vol 898 ◽  
pp. 137-143
Author(s):  
Lin Xiang ◽  
Bin Tang ◽  
Hong Chao Kou ◽  
Jie Shao ◽  
Jin Shan Li

Isothermal compression tests were conducted to investigate the effect of hot deformation parameters on flow behavior and microstructure of Ti-6Al-4V-0.2O alloy. The experimental results show that the strain rate and height reduction have little effect on the volume fraction of primary α at a deformation temperature of 860 ̊C. At a deformation temperature of 940 ̊C, the volume fraction of primary α at a high strain rate (10s-1) is about 10% less than that at low strain rates (0.01s-1~1s-1). It may be one of the reasons for the significantly discontinuous yielding phenomenon. Another reason is that the dislocation density decreased suddenly due to the dynamic recovery. With the increasing strain rate and the decreasing deformation temperature, the volume fraction of irregular secondary α increases and lamellar secondary α decreases. And with height reduction increasing, the irregular secondary α increases firstly and then tends to be steady because of dynamic recovery and recrystallization.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Ramzi Othman

In several industrial applications, metallic structures are facing impact loads. Therefore, there is an important need for developing constitutive equations which take into account the strain rate sensitivity of their mechanical properties. The Johnson-Cook equation was widely used to model the strain rate sensitivity of metals. However, it implies that the yield and flow stresses are linearly increasing in terms of the logarithm of strain rate. This is only true up to a threshold strain rate. In this work, a three-constant constitutive equation, assuming an apparent activation volume which decreases as the strain rate increases, is applied here for some metals. It is shown that this equation fits well the experimental yield and flow stresses for a very wide range of strain rates, including quasi-static, high, and very high strain rates (from 10−5to 5 × 104 s−1). This is the first time that a constitutive equation is showed to be able to fit the yield stress over a so large strain rate range while using only three material constants.


1998 ◽  
Vol 552 ◽  
Author(s):  
J. Sun ◽  
J. S. Wu ◽  
G. X. Hu ◽  
Y. H. He ◽  
B. Y. Huang

ABSTRACTIn this work, superplastic behaviours in Ti-33A1–3Cr-0.5Mo (wt%) γ-TiAl alloys with two different initial microstructures of near gamma (NG) and duplex (DM) structure were investigated with respect to the effect of testing temperatures and strain rates. At 1050°C and a strain rate of 8×10–5 S–1, a maximum elongation of 570% was observed for NG-TiAl and a maximum elongation of 467% for DM-TiAl. The relations of flow stress and strain rate sensitivity vs. strain rates at different temperatures were also determined by incremental strain rate tests. The results showed that the value of strain rate sensitivity is higher and the flow stress is lower for NG than those for DM at the same condition. The microstructural evolution during superplastic deformation was examined and correlated to the mechanical properties for these two alloys. The influence of microstructure on the superplastic behaviours of γ-TiAl alloys, and possible superplastic deformation mechanisms were finally discussed.


Sign in / Sign up

Export Citation Format

Share Document