Study on Thickness Distribution and Spring Back Phenomena of Sheet-Bulk Forming for Aluminum Alloy

2018 ◽  
Vol 920 ◽  
pp. 95-101
Author(s):  
Jhan Hong Ye ◽  
Quang Cherng Hsu

With the advance of technology, aluminum alloy has been widely used in industry. In this study, the formability and spring back phenomena of thick aluminum alloy sheet metal were investigated. Deform-3D and Simufact.forming software were used to simulate the sheet-bulk forming. To find the optimal element size, the convergence analysis method for mesh of simulation process was utilized. In addition, thickness distribution and spring back phenomena of the rectangular blank with round feature of corners were also evaluated. Simulation results were compared to scanning file that obtained via ATOS based on spring back phenomena from experiments. Study results show that the optimal element size is 2 mm. The cross section that is near binder area in x-direction and near quarter area of laptop keyboard in y-direction has minimum spring back. Solid-shell element is better than tetrahedral element for analyzing sheet bulk metal forming process.

2013 ◽  
Vol 327 ◽  
pp. 112-116 ◽  
Author(s):  
Mao Ting Li ◽  
Yong Zhang ◽  
Chui You Kong

Basing on software MSC. Marc of non-linear finite element analysis, the article has studied the material flow in the process of aluminum alloy superplastic gas bulging forming. By analyzing of the thickness distribution of the molding member it confirm the danger zone in the forming process. By analyzing of pressure loading curve influence on forming part. Because the aluminum alloy is widely used in the industrial departments, it is supposed to improve the ability of forming ability of aluminum alloy by researching the superplastic forming.


2016 ◽  
Vol 723 ◽  
pp. 37-43
Author(s):  
Jiu Hui Li ◽  
Dong Ye He ◽  
Xuan Tao Zheng ◽  
Gao Liang Ding

In aluminum alloy sheet metal forming process, annealing treatment can improve the mechanical properties. The tensile test for different temperatures of 400°C, 450°C, 500°C, 550°C respectively have been carried out from 1h to 12h.The result revealed that the ductility increased with the increase of annealing temperature. It is found that the annealing treatment at 500°C for 6 h can get a good property. Furthermore, the result of tensile test showed that the yield strength increased from 130MPa before cold rolling to 190MPa after annealed, and the elongation of the sheet increased to 28.6%. The result of stamping test verified that the limiting draw ratio (LDR) increased after annealing treatment from 1.15 to 1.56. The value of blank holder force for the cylindrical cup is becoming smaller after the annealing treatment. The microstructure investigations on experimental aluminum alloys after long-time annealing and cold rolling conditions were presented. The changes of the main structural contituents have been obviously observed, which improved the formability of the alloys.


2010 ◽  
Vol 44-47 ◽  
pp. 2837-2841 ◽  
Author(s):  
Ying Tong

As one of the principal failures, ductile fracturing restricts metal forming process. Cockcroft-Latham fracture criterion is suited for tenacity fracture in bulk metal-forming simulation. An innovative approach involving physical compression experiments, numerical simulations and mathematic computations provides mutual support to evaluate ductile damage cumulating process and ductile fracture criteria (DFC). The results show that the maximum cumulated damage decreases with strain rate rising, and the incremental ratios, that is damage sensitive rate, vary uniformly during the upsetting processes at different strain rates. The damage sensitive rate decreases rapidly, then it becomes stability in a constant 0.11 after true strain -0.85. The true strain -0.85 was assumed as the fracture strain, and the DFC of 6061-T6 aluminum alloy is almost a constant 0.2. According to DFC, the exact fracture moment and position during various forming processes will be predicted conveniently.


2013 ◽  
Vol 773-774 ◽  
pp. 115-118
Author(s):  
Andrzej Gontarz

This paper presents results of theoretical and experimental research works on metal forming process of a hub. A typical technology of forging on hammer of this part with flash was discussed. Two new processes of a hub forging were proposed, characterized by large material savings in comparison with typical technology. The first process is based on forming without flash of a forging with axial cavity. The second one is connected with forming of forging from pipe billet. The realization of these processes is possible at the application of a press with three movable working tools. Theoretical research works were done on the basis of simulations by means of finite element method. Simulations were made mainly in order to determine kinematics of material flow in forging processes and precision of shape and dimensions of obtained products. The first of the proposed processes was experimentally verified and a product of good quality was obtained. Material consumption of the analyzed processes and other factors acting on their effectiveness were also compared.


2011 ◽  
Vol 704-705 ◽  
pp. 1473-1479
Author(s):  
Jian Zhang ◽  
Yu Lin Ning ◽  
Ben Dong Peng ◽  
Zhi Hua Wang ◽  
Da Sen Bi

6xxx based alloy auto body sheet will be used widely in the future, but, in the recent, one of the difficulty in practice is its poor formability. In this paper properties parameters of 6061 aluminum alloy sheet are investigated by means of examination; By using machine performance parameters of 6061 aluminum alloy, finite element software eta/DYNAFORM of Sheet Forming make the numerical simulation of auto deck lid outer panel .Stress, plastic strain, thick variety are analyzed; and the wrinkling and cracking prone areas identified. Therefore, the effective reference can be provided for design of forming process of 6xxx Based Alloy auto panel.


2012 ◽  
Vol 452-453 ◽  
pp. 81-85 ◽  
Author(s):  
Ming He Chen ◽  
Y.Y. Cao ◽  
W. Chen ◽  
Guo Liang Chen

In order to improve formability of high strength Al-alloy sheet metal, in this paper, it come up with the synchronized cooling hot forming process. Taking the aluminum alloy of 6016 H18 aluminum alloy, which carried out its technology test by Gleeble3500 hot-mechanical simulator. The process parameters such as deformation temperature T, holding time t and cooling rate v is investigated by the orthogonal test and the microstructure is analyzed simultaneously. The results show that the synchronized cooling hot forming process can be applied to 6016 H18 aluminum alloy, it both improves the formability of 6016 H18 aluminum alloy significantly and obtains the high strength after forming, it can meet the purpose of implementing deformation and enhanced in one process step, the proper combination of process parameters are T=450 °C, t=210 s, v=60 °C/s. Strengthening mechanism is which there is a large number of strengthening phase precipitated from matrix in technology process, the strengthening phases are coarser and the dispersed uniformity is a bit worse compared with that of T4 state.


2014 ◽  
Vol 1052 ◽  
pp. 477-481 ◽  
Author(s):  
Ming Tao Wang ◽  
Yuan Song Zeng ◽  
Xue Piao Bai ◽  
Xia Huang

Pre-stress shot peen forming is a metal forming process widely used in aeronautical industry. The test parts of 7150 Al alloy of different thickness were pre-stress shot peen formed. The deformation rule of those parts was investigated by means of changing the peening coverage. The results show that the radius of curvature of the parts will enhance gradually with increasing of the plate’s thickness. In addition, enhancing peening coverage could raise the deformation in the case of that the thickness and peening parameters are unchanged. Furthermore, the minimum radius of curvature of the 8mm plate after saturation pre-stress shot peen forming could reach 499mm.


Author(s):  
Govind N. Sahu ◽  
Sumit Saxena ◽  
Prashant K. Jain ◽  
J. J. Roy ◽  
M. K. Samal ◽  
...  

This paper presents the effect of shell element formulations on the response parameters of incremental sheet metal forming process. In this work, computational time, profile prediction and thickness distribution are investigated by both finite element analysis and experimentally. The experimental results show that the thickness distribution is in good agreement with the results obtained with Belytschko-Tsay (BT) and Improved Flanagan-Belytschko (IFB) shell element formulations. These two shell element formulations do trade-off between computational time and accuracy. For more accurate results, the BT shell element formulation is better and for less computational time with good results, the IFB shell element is preferable. Finally, BT shell element formulation has been chosen for FE Analysis of ISF process in HyperWorks, since the results of thickness distribution and profile prediction is in better agreement with the experimental results as well as the computational time is less among the shell elements.


Sign in / Sign up

Export Citation Format

Share Document