Effects of Antimony and Indium Addition on Wettability and Interfacial Reaction of Sn-3.0Ag-0.5Cu Lead Free Solder on Copper Substrate

2018 ◽  
Vol 928 ◽  
pp. 188-193
Author(s):  
Suchart Chantaramanee ◽  
Worawit Sriwittayakul ◽  
Phairote Sungkhaphaitoon

The effects of antimony and indium addition on wettability and interfacial reaction of Sn-3.0Ag-0.5Cu lead free solder on copper substrate were investigated. The experimental results showed the melting point of solder alloy containing 0.5 wt.% In and 0.5 wt.% Sb were slightly increased about 3.66°C. The pasty range of solder alloys were increased about 6°C while the undercooling of solder alloys were decreased. The microstructures of solder alloy were contained of In and Sb consists of Ag3Sn, Cu6(Sn,In)5, SnIn, Ag3(Sn,In) and SnSb intermetallic compounds (IMCs) dispersed on Sn-rich phase. The wettability of solder alloys were improved by increasing soldering times. In addition, the thickness of intermetallic compounds (Cu6Sn5) were obviously increased with increasing soldering times.

2012 ◽  
Vol 476-478 ◽  
pp. 1163-1168 ◽  
Author(s):  
M.Z. Shahrul Fadzli ◽  
M.A. Azmah Hanim ◽  
T. Sai Hong ◽  
A. Aidy ◽  
R. Rohaizuan

The development works on high temperature lead free solder are mostly discussed nowadays. To replace the current high temperature lead free solders, further research need to be done. A great deal of effort has been put into the development of lead free solder alloys. Bi (Bismuth) and Sb (Antimony) solder system proved as one of the promising candidates for electronic assembly. Melting temperature of three Bi-Sb solder alloys studied in this research enhanced their potential as the alternative solder candidates for high temperature lead free solder. At interface, Cu3Sb IMC layer was formed for 95Bi-5Sb solder alloy. Spallation of Cu3Sb IMC layer took placed with the results of Cu3Sb IMC also found in the solder bulk. Analysis of 97.5Bi-2.5Sb solder alloy classified as no metallurgical reaction at the interface and only the mechanical joining existed at the interface. The dissolution of Cu from subtrate affected the formation of Cu rich phase and the unstable Bi-Cu rich phase phenomena act as the isothermal product found in solder bulk. Mechanical grain boundary grooving observed in 98.5Bi-1.5Sb solder alloys at interface. Different compositions of Bi-Sb solder alloys resulted in different types of microstructures at interface and in solder bulk after reflow.


2020 ◽  
Vol 26 (4) ◽  
pp. 184-187
Author(s):  
Ngoc Binh Duong

Intermetallic compounds (IMCs) formation between lead-free solder alloys (Sn-9Zn and Sn-8Zn-3Bi) and Ni/Au surface finish copper substrate were studied. Reaction between the solder and the substrate was carried out at regular soldering temperature, approx. 50 °C above the melting temperature of the solder alloys. Results indicated that Au-Zn was the IMC formed at the interface and the Au layer which is electro-plated on the substrate has completely dissolved into the solder alloys. The amount of Au available at the interface is an important factor that influent the morphology of the IMC with thicker Au layer on the substrate resulted in thicker layer of IMC at the interface. Although Bi does not taken part in the composition of IMC, it influent the formation of IMC, the IMC formed in the Sn9Zn/substrate interface was Au5Zn3, meanwhile it was g2-AuZn3 in the Sn-8Zn-3Bi/substrate interface.


2011 ◽  
Vol 337 ◽  
pp. 402-405
Author(s):  
Kuai Le Zhao ◽  
Yan Fu Yan ◽  
Yang Yang Sheng ◽  
Ning Du ◽  
Zhan Lei Liu

Zn20Sn solder with the melting point of 383.9°C and a low cost is considered as an ideal high-temperature lead-free solder. In the paper a new solder alloys were made by adding trace Cu into Zn20Sn alloy through alloying principle. Interfacial reaction and solderability of Zn20SnxCu (x=0 wt.%, 2 wt.%, 4 wt.% and 6 wt.%) solder on the copper substrate were investigated. Results showed that β’-CuZn, γ-Cu5Zn8 and ε-CuZn5 IMC layers were formed at the interface of Zn20SnxCu/Cu. The spreading areas of the Zn20SnxCu solders were reduced linearly with the increasing of the content of copper. The spreading aera of Zn20Sn solder was 52.88 mm2 while that of Zn20Sn6Cu was 50.82mm2 which was approximately 3.9% smaller than that of matrix solder. It is mainly related to the formation of ε-CuZn5 phase and the metal intermetallic compound between the solder and the substrate.


2020 ◽  
Author(s):  
Manoj Kumar Pal ◽  
Gréta Gergely ◽  
Dániel Koncz-Horváth ◽  
Zoltán Gácsi

Abstract The Sn-3.0Ag-0.5Cu solder alloy is a prominent candidate for the Pb-free solder, and SAC305 solder is generally employed in today’s electronic enterprise. In this study, the formation of intermetallic compounds (Cu6Sn5 and Ag3Sn) at the interface, average neighbour’s particle distance, and the morphological mosaic are examined by the addition of SiC and nickel-coated silicon carbide reinforcements within Sn-3.0Ag-0.5Cu solder. Results revealed that the addition of SiC and SiC(Ni) particles are associated with a small change to the average neighbor’s particle distance and a decrease of clustering rate to a certain limit of the Sn-3.0Ag-0.5Cu solder composites. Moreover, the development of the Cu6Sn5 and the structure of the Ag3Sn are improved with the addition of SiC and Ni coated SiC.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guang Ren ◽  
Maurice Collins

Purpose This paper aims to investigate the creep behaviour of the recently developed Sn–8Zn–3Bi–xSb (x = 0, 0.5, 1.0 and 1.5) low temperature lead-free solder alloys. Design/methodology/approach An in-house compressive test rig was developed to perform creep tests under stresses of 20–40 MPa and temperature range 25°C–75 °C. Dorn power law and Garofalo hyperbolic sine law were used to model the secondary creep rate. Findings High coefficient of determination R2 of 0.99 is achieved for both the models. It was found that the activation energy of Sn–8Zn–3Bi solder alloy can be significantly increased with addition of Sb, by 60% to 90 kJ/mol approximately, whereas the secondary creep exponent falls in the range 3–7. Improved creep resistance is attributed to solid solution strengthening introduced by micro-alloying. Creep mechanisms that govern the deformation of these newly developed lead-free solder alloys have also been proposed. Originality/value The findings are expected to fill the gap of knowledge on creep behaviour of these newly developed solder alloys, which are possible alternatives as lead-free interconnecting material in low temperature electronic assembly.


2006 ◽  
Vol 35 (1) ◽  
pp. 89-93 ◽  
Author(s):  
C. M. T. Law ◽  
C. M. L. Wu ◽  
D. Q. Yu ◽  
L. Wang ◽  
J. K. L. Lai

2015 ◽  
Vol 815 ◽  
pp. 64-68 ◽  
Author(s):  
Nisrin Adli ◽  
Nurul Razliana Abdul Razak ◽  
Norainiza Saud

The effect of Al addition on the microstructure, melting point and microhardness of SnCu-Al lead-free solder alloys were investigated with two different compositions of Al which were 1 wt% and 5 wt%. These solder alloys were fabricated through powder metallurgy (PM) method. The results showed that the melting point and the microhardness value of the SnCu-Al lead-free solder alloy were increased as the Al content increased from 1 wt% to 5 wt%. The grain growth of SnCu-Al lead-free solder alloy also tends to be retarded due to the homogenous distribution of Al at the grain boundaries.


2013 ◽  
Vol 752 ◽  
pp. 42-47
Author(s):  
Gréta Gergely ◽  
Alíz Molnár ◽  
Zoltán Gácsi

The European Union and Japan initiated the issue of RoHS, the directive about the restriction of hazardous substances, which prohibits certain hazardous substances in electronic equipment - including lead - application. Due to the directive the use of lead free solder alloys is spreaded, however the Pb in the form of contamination may be appear under technological process. The lead impurity has significant effect on microstrucutre and lifetime so it is necessary to carry out detailed examinations. In this paper the study of intermetallic compounds in six-element, Pb impured, thermal cycles test-subjected, Sn-Ag-Cu (SAC) solder alloy is demonstrated


Sign in / Sign up

Export Citation Format

Share Document