Improved Electrical Properties of 4H-SiC MOS Devices with High Temperature Thermal Oxidation

2019 ◽  
Vol 954 ◽  
pp. 99-103
Author(s):  
Heng Yu Xu ◽  
Cai Ping Wan ◽  
Jin Ping Ao

We reported that high oxidation temperature is attributed to break Si-C bond and release nitrogen gas to nitrogen ions over 1350°C. The capacitance-voltage characteristics of SiO2/4H-SiC (0001) MOS capacitors fabricated under different thermal oxidation conditions are compared. The dependence of oxidation temperature on device characteristics (such as VFB and ΔVFB) is also analyzed. After a high temperature oxidation, the device reliability of SiC MOS is improved. Such behavior can be attributed to the reduction of the interface traps during high temperature oxidation.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3764
Author(s):  
Krzysztof Aniołek ◽  
Adrian Barylski ◽  
Marian Kupka

High-temperature oxidation was performed at temperatures from 600 to 750 °C over a period of 24 h and 72 h. It was shown in the study that the oxide scale became more homogeneous and covered the entire surface as the oxidation temperature increased. After oxidation over a period of 24 h, the hardness of the produced layers increased as the oxidation temperature increased (from 892.4 to 1146.6 kgf/mm2). During oxidation in a longer time variant (72 h), layers with a higher hardness were obtained (1260 kgf/mm2). Studies on friction and wear characteristics of titanium were conducted using couples with ceramic balls (Al2O3, ZrO2) and with high-carbon steel (100Cr6) balls. The oxide films produced at a temperature range of 600–750 °C led to a reduction of the wear ratio value, with the lowest one obtained in tests with the 100Cr6 steel balls. Frictional contact of Al2O3 balls with an oxidized titanium disc resulted in a reduction of the wear ratio, but only for the oxide scales produced at 600 °C (24 h, 72 h) and 650 °C (24 h). For the ZrO2 balls, an increase in the wear ratio was observed, especially when interacting with the oxide films obtained after high-temperature oxidation at 650 °C or higher temperatures. The increase in wear intensity after titanium oxidation was also observed for the 100Cr6 steel balls.


2013 ◽  
Vol 761 ◽  
pp. 125-129 ◽  
Author(s):  
Kazuya Hamaguchi ◽  
Tomoyuki Tsuchiyama ◽  
Junichi Matsushita

Tantalum (Ta) can be use a suture for operation and implant material in order not to react with body fluid and stimulate a human body. In this study, the stable oxide of a tantalum, tantalum oxide layer produced by oxidation of the tantalum nitride, TaN powders by high temperature oxidation were investigated in order to determine the possibility of its a distributed aid for biomaterial composite such as an artificial root etc. The sample, TaN powder oxidized at high temperature exhibited a steady mass gain with increasing oxidation temperature. Based on the results of the XRD, tantalum oxide, Ta2O5 was detected on the samples. It is considered, the TaN showed a good oxidation film produced by high temperature oxidation.


2019 ◽  
Vol 71 (5) ◽  
pp. 706-711 ◽  
Author(s):  
Bingxue Cheng ◽  
Haitao Duan ◽  
Yongliang Jin ◽  
Lei Wei ◽  
Jia Dan ◽  
...  

Purpose This paper aims to investigate the thermal oxidation characteristics of the unsaturated bonds (C=C) of trimethylolpropane trioleate (TMPTO) and to reveal the high temperature oxidation decay mechanism of unsaturated esters and the nature of the anti-oxidation properties of the additives. Design/methodology/approach Using a DXR laser microscopic Raman spectrometer and Linkam FTIR600 temperature control platform, the isothermal oxidation experiments of TMPTO with or without 1.0 wt. % of different antioxidants were performed. Findings The results indicated that the Raman peaks of =C-H, C=C and -CH2- weaken gradually with prolonged oxidation time, and the corresponding Raman intensities drop rapidly at higher temperatures. The aromatic amine antioxidant can decrease the attenuation of peak intensity, as it significantly reduces the rate constant of C=C thermal oxidation. The hindered phenolic antioxidant has a protective effect during the early stages of oxidation (induction period), but it may accelerate the oxidation of C=C afterwards. Originality/value Research on the structure changes of synthetic esters during oxidation by Raman spectroscopy will be of great importance in promoting the use of Raman spectroscopy to analyze the oxidation of lubricants.


2009 ◽  
Vol 615-617 ◽  
pp. 537-540 ◽  
Author(s):  
Fredrik Allerstam ◽  
Einar Ö. Sveinbjörnsson

In this work the effect of oxidation temperature of 4H-SiC on the density of near-interface traps is studied. It is seen that the portion of traps with slower emission times decreases with increasing oxidation temperature. Despite this reduction, high temperature oxidation alone is not useful to achieve low density of interface traps at the SiO2/4H-SiC interface.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Martin Weiser ◽  
Richard J. Chater ◽  
Barbara A. Shollock ◽  
Sannakaisa Virtanen

Abstract Over a decade ago, γ′-strengthened Co-base alloys were introduced as potential replacement for conventional Ni-base Superalloys. Insufficient resistance against high-temperature oxidation restricts the number of possible applications. The present study contributes to the understanding of elementary mechanisms such as material transport during extensive oxide scale formation on γ/γ′ Co-base alloys to explain their inferior oxidation behaviour. A clear dependency of the scale growth kinetics on W content and oxidation temperature is demonstrated by thermogravimetry and subsequent analysis of cross-sections. By means of electron backscattered diffraction (EBSD), the evolution of microstructures in the outer oxide layers were examined depending on the oxidation temperature. Sequential exposure of samples in 16O2- and 18O2-containing atmospheres proved counter-current material transport. The combination of focused ion beam (FIB) and secondary ion mass spectroscopy (SIMS) visualised the formation of new oxide phases mainly on the outer and inner interface of the oxide scale. An elaborate review of available transport paths for oxygen is given during the discussion of results. All experimental findings were combined to a coherent explanation of the inferior oxidation resistance of this relatively new class of high-temperature materials at temperatures above 800 °C.


2015 ◽  
Vol 821-823 ◽  
pp. 484-487
Author(s):  
Heng Yu Xu ◽  
Qian Yang ◽  
Xiao Lei Wang ◽  
Xin Yu Liu ◽  
Yan Li Zhao ◽  
...  

A high-temperature process is used to enhance the COxdesorption rate to reduce trap density in SiC/SiO2interface for SiC MOSFETs. Interface state density as measured by Terman method and C-ψs method for the oxidation processes at a high temperature of 1350°C show significant improvement compared to traditional Si thermal oxidation temperature of 1200°C. The higher oxidation temperature led to a much faster growth rate and some observable hysteresis in the CV curves, which could be due to electron trap and can be resolved by NOxpost oxidation anneal (POA).


2013 ◽  
Vol 690-693 ◽  
pp. 294-297
Author(s):  
Jae Sung Oh ◽  
Seon Hui Lim ◽  
Sung Hwan Choi ◽  
Man Ho Park ◽  
Kee Ahn Lee

This study investigated the effect of pre-oxidation on the high-temperature oxidation behavior of Fe-Cr-Al powder porous metal. Using the powder metallurgy process, Fe-Cr-Al powder porous metals with and without pre-oxidation were manufactured. 24-hour TGA tests were conducted at three different temperatures: 900°C, 1000°C, and 1100°C. The high temperature oxidation results showed that pre-oxidized powder porous metal had even higher levels of oxidation resistance compared to that of porous metal without pre-oxidation regardless of the oxidation temperature. The weight gain of pre-oxidized porous metal (0.123%) was lowest at oxidation temperature of 900°C. In contrast, the weight gain of porous metals significantly increased at 1100°C. In the porous metals 900°C and 1000°C oxidized specimen, oxides such as Al2O3and Cr2O3were mainly observed. Porous metals oxidation specimen at 1100°C also revealed the presence of Fe-based oxides in large quantities in addition to the oxides formed at lower temperature.


2003 ◽  
Vol 100 (1) ◽  
pp. 73-82
Author(s):  
Y. Riquier ◽  
D. Lassance ◽  
I. Li ◽  
J. M. Detry ◽  
A. Hildenbrand

Sign in / Sign up

Export Citation Format

Share Document