Improving the Efficiency of Steel De-Oxidation at the Ural Steel

2020 ◽  
Vol 989 ◽  
pp. 400-405
Author(s):  
Alexey N. Shapovalov ◽  
Roman R. Dema ◽  
Sergey P. Nefed'ev

The analysis of the results of steel de-oxidation with manganese and silicon during tapping from an arc furnace in the Ural Steel is carried out. It is shown that the absorption of manganese and silicon during de-oxidation varies widely: from 33.0 to 88.4% (average 68.8%) for manganese and from 25.9 to 79.8% (average 63.8%) for silicon. The main causes of high varies and low absorption of deoxidizing agents were established: low carbon content and high metal overheating before de-oxidation. A statistical analysis of St 37-3 steel de-oxidation data was performed with the aim of improving the efficiency of steel de-oxidation technology in a ladle. The regression equations are obtained, allowing to calculate the assimilation of deoxidizers and the consumption of ferroalloys, depending on the temperature and carbon content in the metal during tapping from the arc furnace.

Alloy Digest ◽  
1984 ◽  
Vol 33 (2) ◽  

Abstract EASTERN STAINLESS Type 316L is a chromium-nickel-molybdenum steel with a very low carbon content (0.03 max.) Its general resistance to corrosion is similar to AISI Type 316 but, because of its low carbon content, it has superior resistance to the formation of harmful carbides that contribute to intergranular corrosion. Type 316L is used widely in many industries such as chemical, food, paper, textile, nuclear and oil. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-439. Producer or source: Eastern Stainless Steel Company.


Alloy Digest ◽  
1983 ◽  
Vol 32 (6) ◽  

Abstract EASTERN STAINLESS TYPE 304L is the basic 18-8 chromium-nickel austenitic stainless steel with a very low carbon content (0.03% max.). Its general resistance to corrosion is similar to AISI Type 304 but, because of its low carbon content, it has superior resistance to the formation of harmful carbides that indirectly contribute to intergranular corrosion. It is recommended for most articles of welded construction. Postweld annealing is not necessary. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-427. Producer or source: Eastern Stainless Steel Company.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Hadi Torkamani ◽  
Shahram Raygan ◽  
Carlos Garcia Mateo ◽  
Yahya Palizdar ◽  
Jafar Rassizadehghani ◽  
...  

AbstractIn this study, dual-phase (DP, ferrite + martensite) microstructures were obtained by performing intercritical heat treatments (IHT) at 750 and 800 °C followed by quenching. Decreasing the IHT temperature from 800 to 750 °C leads to: (i) a decrease in the volume fraction of austenite (martensite after quenching) from 0.68 to 0.36; (ii) ~ 100 °C decrease in martensite start temperature (Ms), mainly due to the higher carbon content of austenite and its smaller grains at 750 °C; (iii) a reduction in the block size of martensite from 1.9 to 1.2 μm as measured by EBSD. Having a higher carbon content and a finer block size, the localized microhardness of martensite islands increases from 380 HV (800 °C) to 504 HV (750 °C). Moreover, despite the different volume fractions of martensite obtained in DP microstructures, the hardness of the steels remained unchanged by changing the IHT temperature (~ 234 to 238 HV). Applying lower IHT temperature (lower fraction of martensite), the impact energy even decreased from 12 to 9 J due to the brittleness of the martensite phase. The results of the tensile tests indicate that by increasing the IHT temperature, the yield and ultimate tensile strengths of the DP steel increase from 493 to 770 MPa, and from 908 to 1080 MPa, respectively, while the total elongation decreases from 9.8 to 4.5%. In contrast to the normalized sample, formation of martensite in the DP steels could eliminate the yield point phenomenon in the tensile curves, as it generates free dislocations in adjacent ferrite.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Omnia A. Elhiny ◽  
Mohammed Abou Elyazied ◽  
Ghada A. Salem

Abstract Background The choice between extraction and expansion treatment is an endless debate in orthodontics. Ethnic and secular variations showed that there was a change in  arch perimeter over the last 50 years. Accordingly, the purpose of this study was to investigate the relation between the arch perimeter and the intercanine and intermolar widths in normal occlusion. Also, to design regression equations for the prediction of the arch perimeter based on arch width, in a sample of the Egyptian population. The images of 340 cast pairs for 11 to 13-year-old patients were traced using TracerNet. Intercanine width, intermolar width and arch perimeter were measured, statistical analysis was performed and regression equations for both arches were formulated. Results There was a positive correlation between the lower arch AP, ICW and IMW and between the upper arch AP and ICW. Lower arch perimeter = 0.536 I33 + 71.642, lower arch perimeter = 0.828 l66 + 58.604 and upper arch perimeter = 1.988 U33 + 30.492 were the significant derived equations. Conclusions The formulation of regression equations offers a tool for the prediction of arch perimeter or arch width that can act as a guide in diagnosis and treatment planning.


2017 ◽  
Vol 740 ◽  
pp. 93-99
Author(s):  
Muhammad Hafizuddin Jumadin ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Siti Khadijah Alias ◽  
Samsiah Ahmad

Increase of soaking time contributed to the effectiveness of case depth formation, hardness properties and carbon content of carburized steel. This paper investigates the effect of different soaking time (7-9 hours) using powder and paste compound to the carburized steel. Low carbon steels were carburized using powder and paste compound for 7, 8 and 9 hours at temperature 1000°C. The transformation of microstructure and formation carbon rich layer was observed under microscope. The microhardness profiles were analyzed to investigate the length of case depth produced after the carburizing process. The increment of carbon content was considered to find the correlation between types of carburizing compound with time. Results shows that the longer carburized steel was soaked, the higher potential in formation of carbon rich layer, case depth and carbon content, which led to better hardness properties for carburized low carbon steel. Longer soaking time, 9 hours has a higher dispersion of carbon up to 41%-51% compare to 8 hours and 7 hours. By using paste carburizing, it has more potential of carbon atom to merge the microstructure to transform into cementite (1.53 wt% C) compare to powder (0.97 wt% C), which increases the hardness of carburized steel (13% higher).


2004 ◽  
Vol 7 (2) ◽  
pp. 263-267 ◽  
Author(s):  
Jorge Otubo ◽  
Odair Doná Rigo ◽  
Carlos de Moura Neto ◽  
Michael Joseph Kaufman ◽  
Paulo Roberto Mei

1997 ◽  
Vol 467 ◽  
Author(s):  
F. C. Marques ◽  
J. Vilcarromero ◽  
F. L. Freire

ABSTRACTStructural and mechanical properties of hydrogenated amorphous germanium carbon (a-Ge1-xCx:H) alloys are presented. The films were prepared by the rf-co-sputtering technique using a graphite/germanium composed target. The carbon and germanium relative concentrations were determined by RBS, and the total hydrogen concentration by ERDA measurements. An increase in the optical gap was measured for low carbon content (0 < × < 0.15). For higher values of x the optical gap is almost constant. Infrared transmission absorption spectra show several absorption bands related to Ge-C stretching, C-Hn (n = 1,2,3) and Ge-H stretching and bending modes. The mechanical internal stress was strongly affected by the incorporation of carbon. The trends of the optical gap, refractive index, infrared absorption and mechanical stress as a function of the carbon content suggest that the high carbon concentration alloys have polymeric and/or graphite-like contribution in their structure.


2010 ◽  
Vol 649 ◽  
pp. 61-66
Author(s):  
Zoltán Kálazi ◽  
Viktória Janó ◽  
Gábor Buza

Tungsten (W) based alloy composite layer reinforced with TiC particles has been successfully prepared on unalloyed steel sample by LMI technology. In order to obtain in situ produced TiC reinforcement, pure titanium has been introduced to the melt pool. WC powder was added for increasing the carbon content of the layer in order to avoid the softening of the matrix (with low carbon content) during TiC formation. The present study aims to investigate the optimum amount of injected WC and Ti powder to improve wear resistance and hardness of the layer. Samples were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The maximum hardness of the layer has been reached ~900HV in case of 2-4wt% of titanium content. Ti has been collected all of the carbon from the matrix when titanium content was 9,6wt%, which resulted that the austenite and (Fe,W)6C phases have been disappeared. Only α-Fe and TiC phases were presented in the layer. The hardness of the layer reduced to the hardness of the base material.


Sign in / Sign up

Export Citation Format

Share Document