Mechanical Property Association of Dual Phase and Austempered AISI 4140 Normalized Steel

2020 ◽  
Vol 995 ◽  
pp. 174-179
Author(s):  
Sathyashankara Sharma ◽  
B.M. Gurumurthy ◽  
U. Achutha Kini ◽  
M.C. Gowrishankar ◽  
Y.M. Shivaprakash

The present investigation intended to analyse the mechanical properties of medium carbon low alloy steel (AISI 4140) under dual phase heat treatment condition. Formation of dual phase, ferrite and martensite (F+M) from normalized condition followed by heating in the intercritical temperature range to form different volume fractions of ferrite and martensite alters tensile, hardness and impact strength of medium carbon steel. Effect of alloying elements in dual phase treatment will change the mechanical properties. Tensile strength and hardness of austempered steel shows higher value followed by dual phase condition. Ductility of normalized shows better as compared to as bought and dual phase, but austempered shows almost similar to normalized result. Impact strength of the austempered is excellent followed by dual phase condition. Heat treated specimen microstructures reveal the different phase’s present.

2019 ◽  
Vol 35 ◽  
pp. 229-235 ◽  
Author(s):  
Oluwagbenga T. Johnson ◽  
Enoch N. Ogunmuyiwa ◽  
Albert U. Ude ◽  
Norman Gwangwava ◽  
Richard Addo-Tenkorang

Author(s):  
R. Suresh

The effect of various heat treatment operations (annealing, normalizing and hardening) on mechanical properties of medium carbon steel was investigated. The samples were prepared and heat-treated at 770 ºC subsequently was cooled by different quenching media. The mechanical properties of the treated and untreated samples were determined using standard methods. Results showed that the mechanical properties of carbon steel can be changed and improved by various heat treatments. It was also found that the annealed samples has the lowest tensile strength and hardness value and highest ductility, while hardened samples has the highest tensile strength and hardness value and lowest ductility value.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Alloy Digest ◽  
1988 ◽  
Vol 37 (9) ◽  

Abstract AISI 4140 is a through-hardening chromium-molybdenum medium carbon steel. It is not subject to temper embrittlement. It is recommended for heavy duty service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: SA-18. Producer or source: Alloy steel mills and foundries. Originally published May 1954, revised September 1988.


2009 ◽  
Vol 6 (S1) ◽  
pp. S314-S320 ◽  
Author(s):  
Luciano Dutrey ◽  
Evangelina De Las Heras ◽  
Hernán G. Svoboda ◽  
Pablo A. Corengia

Sign in / Sign up

Export Citation Format

Share Document