Wall Slip of Suspension Flowing in Capillary at Elevated Temperature

2006 ◽  
Vol 111 ◽  
pp. 87-90 ◽  
Author(s):  
Z.Y. Wang ◽  
Yee Cheong Lam ◽  
X. Chen

The flow of a suspension system with glass microspheres in polymer EVA (Ethylene Vinyl Acetate) melts system was studied in a capillary rheometer. The slip velocity was determined by Mooney technique. A modified slip law describing the slip velocity as a function of the wall shear stress and particle concentration was proposed and employed to describe the flow behavior of the suspension system.

2012 ◽  
Vol 26 (01) ◽  
pp. 1250006 ◽  
Author(s):  
STEFFEN SCHNEIDER

In this work, a new method to determine the wall shear stress was developed step by step. To determine the wall shear stress, methods of the suspension rheology are being used for the first time to characterize ER fluids. This work focuses on investigations of the flow behavior of electrorheological suspensions in flow channels with different geometries at different electrical field strengths. Careful interpretation of the results with respect to different gap geometries has shown that the measured flow curves should undergo a combination of corrections. As a result it can be shown that wall slip effects can be measured under application like conditions on a hydraulic test bench.


1999 ◽  
Vol 9 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Karim Bekkour

Abstract Foams have been prepared from water added with a surfactant (Sodium-Dodecyl-Sulfate, SDS) and a polymer (Poly-Ethylene-Oxide, PEO) at different concentrations. This work was devoted to a study of the flow properties of the foams. The pressure drops were measured during flow in capillary tubes (2.5, 3.5 and 4 mm) in laminar regime. It was found a strong dependence of the flow curves on capillary diameter showing that pronounced wall slip effects exist. Two known approaches were applied to quantify the slip velocity: (a) the Mooney method, in which the key assumption is that the slip velocity depends only on the wall shear stress, was not applicable and (b) the Oldroyd-Jastrzebski method, in which the assumption is that the slip velocity depends not only on the wall shear stress but also on the flow geometry, yielded satisfactory results. The determination of the pressure drop coefficient showed that the Metzner and Reed correlation, i.e., the Reynolds analogy based on the generalised Reynolds number, could be applied if the data are corrected for slip effects.


2006 ◽  
Vol 129 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Alfeus Sunarso ◽  
Takehiro Yamamoto ◽  
Noriyasu Mori

We performed numerical simulation to investigate the effects of wall slip on flow behaviors of Newtonian and non-Newtonian fluids in macro and micro contraction channels. The results show that the wall slip introduces different vortex growth for the flow in micro channel as compared to that in macro channel, which are qualitatively in agreement with experimental results. The effects of slip on bulk flow behaviors depend on rheological property of the fluid. For Newtonian fluid, the wall slip always reduces the vortex length, while for non-Newtonian fluid, the strength of the slip determines whether the vortex length is reduced or increased. Analyses on the velocity and stress fields confirm the channel size dependent phenomena, such as the reduction of wall shear stress with the decrease in channel size. With the increase in average shear rate, the Newtonian fluid shows the reduction of wall shear stress that increases in the same trend with slip velocity-wall shear stress function, while for non-Newtonian fluid, the effect of the slip is suppressed by shear thinning effect and, therefore, the reduction of wall shear stress is less sensitive to the change in average shear rate and slip velocity-wall shear stress function.


2021 ◽  
Author(s):  
Patrick Wilms ◽  
Jan Wieringa ◽  
Theo Blijdenstein ◽  
Kees van Malssen ◽  
Reinhard Kohlus

AbstractThe rheological characterization of concentrated suspensions is complicated by the heterogeneous nature of their flow. In this contribution, the shear viscosity and wall slip velocity are quantified for highly concentrated suspensions (solid volume fractions of 0.55–0.60, D4,3 ~ 5 µm). The shear viscosity was determined using a high-pressure capillary rheometer equipped with a 3D-printed die that has a grooved surface of the internal flow channel. The wall slip velocity was then calculated from the difference between the apparent shear rates through a rough and smooth die, at identical wall shear stress. The influence of liquid phase rheology on the wall slip velocity was investigated by using different thickeners, resulting in different degrees of shear rate dependency, i.e. the flow indices varied between 0.20 and 1.00. The wall slip velocity scaled with the flow index of the liquid phase at a solid volume fraction of 0.60 and showed increasingly large deviations with decreasing solid volume fraction. It is hypothesized that these deviations are related to shear-induced migration of solids and macromolecules due to the large shear stress and shear rate gradients.


2019 ◽  
Vol 92 (1) ◽  
pp. 186-197
Author(s):  
Katja Putzig ◽  
E. Haberstroh ◽  
B. Klie ◽  
U. Giese

ABSTRACT Flow behavior is of major importance in the extrusion processing of rubber compounds. It is evaluated by means of a series of tests on a high-pressure capillary viscometer (HCV). Adhesion between the polymer melt and the capillary wall is assumed in all current calculation models, although such adhesion does not always pertain to the case of rubber compounds. To date, no uniform model discussed in the literature on the topic extensively describes the wall slippage behavior of rubber compounds. The phenomenon of wall slippage is analyzed by determining the power-law parameters n (flow exponent) and K (consistency factor) from the flow curve in the subcritical flow range. This makes it possible to explicitly calculate first the slip velocity and then the slippage ratio relative to the total volume flow as a function of the given shear rate and temperature. The work is based on the testing of EPDM raw polymers of different molecular weights in the HCV. In addition, EPDM compounds containing either a carbon black or a softener were analyzed with regard to their flow behavior. The rheological analysis was carried out on three variously coated flow channels. It was observed that with attainment of a critical wall shear stress, the wall slippage effect becomes more pronounced; thus, occurrences of flow anomalies such as slip-stick or shark-skin significantly influence processing and flow behavior. Wall slippage effects are noticeable, however, even before the critical wall shear stress is attained.


Author(s):  
D Zhao ◽  
Y Jin ◽  
M Wang ◽  
M Song

Wall slip is one of the most important characteristics of polymer melts’ elasticity behaviours as well as the most significant factor which affects the flow of polymer melts. Based on the traditional Mooney method, through a double-barrel capillary rheometer, the relationship between velocities of wall slip, shear stress, shear rate, diameters of dies, and temperature of polypropylene (PP), high-density polyethylene (HDPE), polystyrene (PS), and polymethylmethacrylate (PMMA) is explored. The results indicate that the velocities of the wall slip of PP and HDPE increase apparently with shear stress and slightly with temperature. Meanwhile, the rise of temperature results in the decrease of critical shear stress. The wall-slip velocities of PS and PMMA are negative which means that the Mooney method based on the adsorption–desorption mechanism has determinate limitation to calculate the wall-slip velocity. Based on the entanglement–disentanglement mechanism, a new wall-slip model is built. With the new model, the calculation values of velocity of PP and HDPE correspond to the experimental values very well and the velocities of PS and PMMA are positive. The velocities of PS and PMMA increase obviously with the rise of shear stress. The rise of temperature results in the increase of velocity and decrease of critical shear stress. Then, the molecular dynamics simulation is used to investigate the combining energy between four polymer melts and the inside wall. The results show that at the given temperature and pressure, the molecules of PS and PMMA combine with atoms of the wall more tightly than those of PP and HDPE which means when wall slip occurs, the molecules of PS and PMMA near the wall will adsorb to the surface of the wall. However, those of PP and HDPE will be easy to slip. Therefore, the wall-slip mechanism of PP and HDPE is the adsorption–desorption mechanism, and that of PS and PMMA is the entanglement–disentanglement mechanism. According to the different wall-slip mechanisms of four polymers, an all-sided calculation method of wall-slip velocity is raised which consummates the theory of wall slip of polymer melts.


Author(s):  
Ravi Arora ◽  
Eric Daymo ◽  
Anna Lee Tonkovich ◽  
Laura Silva ◽  
Rick Stevenson ◽  
...  

Emulsion formation within microchannels enables smaller mean droplet sizes for new commercial applications such as personal care, medical, and food products among others. When operated at a high flow rate per channel, the resulting emulsion mixture creates a high wall shear stress along the walls of the narrow microchannel. This high fluid-wall shear stress of continuous phase material past a dispersed phase, introduced through a permeable wall, enables the formation of small emulsion droplets — one drop at a time. A challenge to the scale-up of this technology has been to understand the behavior of non-Newtonian fluids under high wall shear stress. A further complication has been the change in fluid properties with composition along the length of the microchannel as the emulsion is formed. Many of the predictive models for non-Newtonian emulsion fluids were derived at low shear rates and have shown excellent agreement between predictions and experiments. The power law relationship for non-Newtonian emulsions obtained at low shear rates breaks down under the high shear environment created by high throughputs in small microchannels. The small dimensions create higher velocity gradients at the wall, resulting in larger apparent viscosity. Extrapolation of the power law obtained in low shear environment may lead to under-predictions of pressure drop in microchannels. This work describes the results of a shear-thinning fluid that generates larger pressure drop in a high-wall shear stress microchannel environment than predicted from traditional correlations.


1993 ◽  
Vol 265 (2) ◽  
pp. H553-H561 ◽  
Author(s):  
C. Alonso ◽  
A. R. Pries ◽  
P. Gaehtgens

The time-dependent flow behavior of normal human blood after a sudden reduction of wall shear stress from 5,000 mPa to a low level (2-100 mPa) was studied during perfusion of vertical tubes (internal diam 28-101 microns) at constant driving pressures. Immediately after the implementation of low-shear flow conditions the concentration of red blood cells (RBCs) near the tube wall started to decrease, and marginal plasma spaces developed as a result of the assembly of RBC aggregates. This was associated with a time-dependent increase of flow velocity by up to 200% within 300 s, reflecting a reduction of apparent viscosity. These time-dependent changes of flow behavior increased strongly with decreasing wall shear stress and with increasing tube diameter. A correlation between the width of the marginal plasma layer and relative apparent viscosity was obtained for every condition of tube diameter, wall shear stress, and time. Time-dependent changes of blood rheological properties could be relevant in the circulation, where the blood is exposed to rapid and repeated transitions from high-shear flow conditions in the arterial and capillary system to low-shear conditions in the venous system.


Author(s):  
Kimie Onogi ◽  
Kazuhiro Kohge ◽  
Kiyoshi Minemura

This article illustrates numerical results on pulsating blood flow through moderately stenosed blood vessel. Two kinds of waveform, that is, a purely sinusoidal waveform and a non-sinusoidal one just like human blood flow are calculated for two cases of heart rate as 60 and 160 (1/s), and resultant flow behavior such as flow velocities, secondary flow, wall shear stress and pressure change are discussed. The abrupt changes in the pressure and wall shear stress occur on the throat of the stenosis, suggesting that this part is easily damaged by the effects when the heart rate is increased.


Atherosclerosis is a potentially serious illness where arteries become clogged with fatty substances called plaques. Over the years, this pathological condition has been deeply studied and computational fluid dynamics has played an important role in investigating the blood flow behavior. Commonly, the blood flow is assumed to be laminar and a Newtonian fluid. However, under a stenotic condition, the blood behaves as a non-Newtonian fluid and the pulsatile blood flow through coronary arteries could result in a transition from laminar to turbulent flow condition. The present study aims to analyze and compare numerically the blood flow behavior, applying the k-ω SST model and a laminar assumption. The effects of Newtonian and non-Newtonian (Carreau) models were also studied. In addition, the effect of the stenosis degree on velocity fields and wall shear stress based descriptors were evaluated. According to the results, the turbulent model is shown to give a better overall representation of pulsatile flow in stenotic arteries. Regarding, the effect of non-Newtonian modeling, it was found to be more significant in wall shear stress measurements than in velocity profiles. In addition, the appearance of recirculation zones in the 50% stenotic model was observed during systole, and a low TAWSS and high OSI were detected downstream of the stenosis which, in turn, are risk factors for plaque formation. Finally, the turbulence intensity measurements allowed to distinguish regions of recirculating and disturbed flow.


Sign in / Sign up

Export Citation Format

Share Document