Nano-Sized Au/CeO2 Catalysts for Total and Selective CO Oxidation

2007 ◽  
Vol 124-126 ◽  
pp. 1749-1752 ◽  
Author(s):  
Eun Yong Ko ◽  
Eun Duck Park ◽  
Hyun Chul Lee ◽  
Doo Hwan Lee ◽  
Soon Ho Kim

Au/CeO2 catalysts prepared by a deposition-precipitation and a co-precipitation method were applied to CO oxidation in the absence and presence of hydrogen. The transmission electron microscope (TEM), the temperature programmed reduction (TPR), and the X-ray absorption near edge structure (XANES) were conducted to probe structural and electronic properties of gold. Au2O3 was determined to be mainly present when Au/CeO2 was prepared by a deposition-precipitation method. However, the metallic gold was observed in a co-precipitated Au/CeO2 catalyst. Au/CeO2 containing oxidized gold species, prepared by a deposition-precipitation method, showed the decreasing CO conversion with a reaction time, which accompanied the reduction of gold from Au(+3) to Au(0). However, co-precipitated Au/CeO2 showed the stable CO conversion. The effect of pretreatment condition on CO oxidation was also examined. These results support that Au/CeO2 catalyst containing oxidized gold species was superior to Au/CeO2 catalyst containing the metallic gold for CO oxidation. This Au/CeO2 catalyst was also active for the selective CO oxidation in the presence of hydrogen.

2012 ◽  
Vol 581-582 ◽  
pp. 313-316
Author(s):  
Xue Qiao Zhang ◽  
Zhi Xiang Ye ◽  
Cheng Hua Xu ◽  
Ming Zhao ◽  
Yao Qiang Chen

Barium oxide was introduced to modify Palladium catalysts supported on CeO2–ZrO2-La2O3-Al2O3 (CZLA) by impregnation and co-precipitation. methods. Various techniques, including X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS), were employed to characterize the physicochemical properties of BaO-modified Pd-only catalyst. Catalytic activity for methanol, CO, C3H8 and NO conversions showed that BaO-modified catalyst prepared by impregnation method exhibited the best performance for methanol, C3H8 and NO removals, while the catalyst prepared by co-precipitation method was in favor of CO oxidation. Combined with the results of XRD, H2-TPR and XPS, it is concluded that the co-existence of PdO and Pd-O-Ce active species by impregnation played an important role in the methanol, C3H8 and NO removals, while the higher dispersion of palladium and improved reducibility were mostly favorable to the CO oxidation. The conversion of NO was co-effected by tow active species and the formation of Ba2AlLaO5 mixed oxide.


Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 27 ◽  
Author(s):  
Eswaravara Prasadarao Komarala ◽  
Ilia Komissarov ◽  
Brian A. Rosen

Perovskites LaNi0.8Fe0.2O3 and LaNi0.8Mn0.2O3 were synthesized using the co-precipitation method by substituting 20 mol.% of the Ni-site with Fe and Mn, respectively. Temperature programmed reduction (TPR) showed that the exsolution process in the Fe- and Mn-substituted perovskites followed a two-step and three-step reduction pathway, respectively. Once exsolved, the catalysts were found to be able to regenerate the original perovskite when exposed to an oxygen environment but with different crystallographic properties. The catalytic activity for both materials after exsolution was measured for the methane dry reforming (DRM) reaction at 650 °C and 800 °C. Catalyst resistance against nickel agglomeration, unwanted phase changes, and carbon accumulation during DRM were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The presence Fe alloying in the catalyst particles after exsolution from LaNi0.8Fe0.2O3 led to a lower methane conversion compared to the catalyst derived from LaNi0.8Mn0.2O3 where no alloying occurred.


2015 ◽  
Vol 659 ◽  
pp. 211-215
Author(s):  
Parncheewa Udomsap ◽  
Somsak Supasitmongkol

The effect of gallium-promoted copper-based catalysts has been investigated in connection with the characteristic of the active copper phase. CuO-ZnO-Ga2O3catalysts with different gallium loadings were prepared using oxalate co-precipitation method. The effects of gallium loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and temperature-programmed reduction (TPR). The dispersion and metal area of copper were also determined by dissociative nitrous (N2O) adsorption technique conducted on a metal dispersion analyzer (BELCAT). The TPR profiles showed that the presence of two different reduction regions in the CuO-ZnO catalysts can be attributed to the reduction of highly dispersed copper oxide species (reduced at 246 °C) and bulk-like CuO (reduced at above 390 °C). By contrast, the only low-temperature reduction peak was presented in the TPR profiles after the Ga2O3loading was higher than 4 wt%. With the same molar ratio (Cu/Zn = 2:1), the reducibility of CuO-ZnO-Ga2O3was found to be more facile than CuO-ZnO due to the lower copper oxide crystallite sizes of gallium-promoted catalysts. Higher Ga2O3loadings resulted in an increase in both copper dispersion and metal surface area of all the catalysts studied in good agreement with the reduction behaviors in the TPR profiles, although all the gallium-promoted catalysts were slightly different for the reducibility.


2018 ◽  
Vol 55 (1B) ◽  
pp. 49
Author(s):  
Phuong P. H.

A series of 10 wt% Ni/Al2O3–MO (M = Mg, Ca, Ba) catalyst was prepared by impregnation method for applying in the combined steam and carbon dioxide reforming of methane (CSCRM). In this study, five supported nickel catalysts were impregnated on different supports. All of the supports have been obtained by co–precipitation method and also have been investigated. Several techniques, including N2 physisorption measurements, X–ray powder diffraction (XRD), temperature–programmed reduction using H2 (H2–TPR), and transmission electron microscopy (TEM) were used to investigate catalysts’ physicochemical properties. The results showed that MgO was the most suitable promoter comparing with CaO and BaO in CSCRM. The presence of MgO in Ni/Al2O3 changed catalysts’ characteristics leading to an increase in the catalytic activity and stability with time on stream (TOS). It was found that the suitable catalyst was Ni–based on Al2O3–MgO of mass ratio 2:1 which showed a high metal dispersion as well as dominated spinel structure. The CH4 and CO2 conversion at 800 °C reached 99.8 % and 51.7 %, respectively. Catalytic stability of this catalyst with TOS at 800 °C could reach to more than 20 hours until it started decreasing.


2015 ◽  
Vol 7 (2) ◽  
pp. 1393-1403
Author(s):  
Dr R.P VIJAYALAKSHMI ◽  
N. Manjula ◽  
S. Ramu ◽  
Amaranatha Reddy

Single crystalline nano-sized multiferroic BiFeO3 (BFO) powders were synthesized through simple chemical co-precipitation method using polyethylene glycol (PEG) as capping agent. We obtained pure phase BiFeO3 powder by controlling pHand calcination temperature. From X-ray diffraction studies the nanoparticles were unambiguously identified to have a rhombohedrally distorted perovskite structure belonging to the space group of R3c. No secondary phases were detected. It indicates single phase structure. EDX spectra indicated the appearance of three elements Bi, Fe, O in 1:1:3. From the UV-Vis diffuse reflectance spectrum, the absorption cut-off wavelength of the BFO sample is around 558nm corresponding to the energy band gap of 2.2 eV. The size (60-70 nm) and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM).   Linear M−H behaviour and slight hysteresis at lower magnetic field is observed for BiFeO3 nanoparticles from Vibrating sample magnetometer studies. It indicates weak ferromagnetic behaviour at room temperature. From dielectric studies, the conductivity value is calculated from the relation s = L/RbA Sm-1 and it is around 7.2 x 10-9 S/m.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


2015 ◽  
Vol 18 (2) ◽  
pp. 187-196
Author(s):  
Tri Nguyen ◽  
Anh Cam Ha ◽  
Loc Cam Luu ◽  
Cuong Tien Hoang ◽  
Thi Thi Yen Trinh ◽  
...  

The optimal Pt-modified CuO supported on γ-Al2O3 and γ-Al2O3 + CeO2 catalysts have been prepared. Physico-chemical characteristics of catalysts were investigated and determined by the methods of N2 adsorption (BET), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), and hydrogen pulse chemisorption (HPC). The characteristics of carbon monoxide (CO) adsorption on catalysts were defined by the method of infrared spectroscopy (IR) in the range of 4000 – 400 cm-1. The effect of the mixture of water vapour and SO2 on the activity of these catalysts for the CO oxidation was assessed. Reactions were conducted at 200oC and 350oC in the absence and presence of the mixture of water vapour (1.1 mol %) and SO2 (0.0625 mol %). Concentrations of O2 and CO in the gas mixture were 9.2 mol % and 0.5 mol %, respectively. The results showed that in the catalysts there exist highly active centers Cu1+ and Pt2+. On the catalysts the adsorption of CO on Cu2+, Pt2+, CeO2, and γ - Al2O3 centres was observed. Addition of CeO2 led to increase the reductivity, CO adsorption but decrease in specific surface area of catalyst. The result PtCu/CeAl catalyst shown higher active, but lower stability compared to PtCu/Al catalyst. The mixture of water vapour and SO2 showed the reversible poisoning toward the Pt-CuO catalysts at a temperature of 350oC, but irreversible at 200oC


2019 ◽  
Vol 17 (1) ◽  
pp. 865-873 ◽  
Author(s):  
Muhammad Ramzan Saeed Ashraf Janjua

AbstractThe nano aggregates of cobalt oxide (Co3O4) are synthesized successfully by adopting simple a co precipitation approach. The product obtained was further subjected to the calcination process that not only changed it morphology but also reduces the size of individual particles of aggregates. The prepared nano aggregates are subjected to different characterization techniques such as electron microscopies (scanning electron microscopy and transmission electron microscopy) and X-ray diffraction and results obtained by these instruments are analyzed by different software. The characterization results show that, although the arrangement of particles is compact, several intrinsic spaces and small holes/ pores can also be seen in any aggregate of the product. The as synthesized product is further tested for catalytic properties in thermal decomposition of ammonium perchlorate and proved to be an efficient catalyst.


2017 ◽  
Vol 42 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Yubo Ma ◽  
Zhixian Gao ◽  
Wumanjiang Eli

Rh catalysts supported on Fe2O3, Co3O4 and Fe2O3–Co3O4 mixed oxide were prepared by the co-precipitation method. The effect of the support on the performance of the Rh catalysts for the hydroformylation of dicyclopentadiene was investigated using X-ray photoelectron spectroscopy, H2-temperature-programmed reduction, H2-temperature-programmed desorption and Brunauer–Emmett–Teller analysis techniques. The results indicated that the Fe2O3–Co3O4 supported catalyst had a higher dispersion of Rh and thus more Rh+ sites. As a result, the Fe2O3–Co3O4 supported Rh catalyst exhibited higher activity compared with counterparts supported on Fe2O3 and Co3O4.


Sign in / Sign up

Export Citation Format

Share Document