Comparison of Defects Created by Plasma-Based Ion Implantation and Conventional Implantation of Hydrogen in Germanium

2007 ◽  
Vol 131-133 ◽  
pp. 101-106
Author(s):  
Marie-Laure David ◽  
Frédéric Pailloux ◽  
Michèl Drouet ◽  
Marie France Beaufort ◽  
Jean François Barbot ◽  
...  

(001) n-type Ge has been implanted at given fluence and intermediate temperature with hydrogen ions using two processes: conventional in-line implantation and plasma based ion implantation. The as-created microstructure has been compared using transmission electron microscopy. In particular, it has been shown that the major differences observed are due to the implantation temperature, much higher during the PBII process. This suggests that plasma based ion implantation could be used for layer transfer in spite of a higher surface roughness observed after the PBII process.

2016 ◽  
Vol 874 ◽  
pp. 323-327
Author(s):  
Hong Xiu Zhou ◽  
Ming Lei Li ◽  
Neng Dong Duan ◽  
Bo Wang ◽  
Zhi Feng Shi ◽  
...  

A nanotwinned surface is formed on a titanium alloy under nanoindentations. Prior to nanoindentation, blocks of a ternary titanium alloy are machined by chemical mechanical polishing. The surface roughness Ra and peak-to-valley values are 1.135 nm and 8.82 nm, respectively. The hardness in the indented surface is greatly increased, indicated from the load-displacement curves compared to the polished surfaces. Nanotwins are confirmed using transmission electron microscopy. The nanotwinned surface is uniformly generated by nanoindentations at room temperature, which is different from previous findings, in which high temperature, high pressure, or chemical reagents are usually used. The nanotwinned surface is produced by pure mechanical stress, neither material removal nor addition.


2019 ◽  
Vol 963 ◽  
pp. 399-402 ◽  
Author(s):  
Cristiano Calabretta ◽  
Massimo Zimbone ◽  
Eric G. Barbagiovanni ◽  
Simona Boninelli ◽  
Nicolò Piluso ◽  
...  

In this work, we have studied the crystal defectiveness and doping activation subsequent to ion implantation and post-annealing by using various techniques including photoluminescence (PL), Raman spectroscopy and transmission electron microscopy (TEM). The aim of this work was to test the effectiveness of double step annealing to reduce the density of point defects generated during the annealing of a P implanted 4H-SiC epitaxial layer. The outcome of this work evidences that neither the first 1 hour isochronal annealing at 1650 - 1700 - 1750 °C, nor the second one at 1500 °C for times between 4 hour and 14 hour were able to recover a satisfactory crystallinity of the sample and achieve dopant activations exceeding 1%.


1992 ◽  
Vol 279 ◽  
Author(s):  
Erin C. Jones ◽  
Seongil Im ◽  
Nathan W. Cheung

ABSTRACTSub-100 nm P+/N junctions are fabricated by implanting wafers in the plasma immersion ion implantation system (PIII). Ions from SiF4 and BF3 plasmas are implanted at energies from 4–6 keV and 2 keV, respectively. The amorphous region formed by SiF4 im-plantion is shown to be effective in slowing B diffusion during a 10 sec, 1060°C rapid thermal anneal step. Channeling and transmission electron microscopy studies show the recrys-tallized amorphous region is comparable in quality to an unprocessed Si wafer, and the implantation and annealing sequence has no detrimental effects on the physical or electrical characteristics of fabricated devices. Diodes have forward ideality factors of 1.05 to 1.06 and reverse leakage as low as 2 nA/cm2 in the diode bulk at -5 V applied bias.


2006 ◽  
Vol 957 ◽  
Author(s):  
Rajendra Singh ◽  
R. Scholz ◽  
U. Gösele ◽  
S. H. Christiansen

ABSTRACTZnO(0001) bulk crystals were implanted with 100 keV H2+ ions with various doses in the range of 5×1016 to 3×1017 cm-2. The ZnO crystals implanted up to a dose of 2.2×1017 cm-2 did not show any surface exfoliation, even after post-implantation annealing at temperatures up to 800°C for 1 h while those crystals implanted with a dose of 2.8×1017 cm-2 or higher exhibited exfoliated surfaces already in the as-implanted state. In a narrow dose window in between, controlled exfoliation could be obtained upon post-implantation annealing only. Cross-sectional transmission electron microscopy (XTEM) of the implanted ZnO samples showed that a large number of nanovoids were formed within the implantation-induced damage band. These nanovoids served as precursors for the formation of microcracks leading to the exfoliation of ZnO wafer surfaces. In addition to the nanovoids, elongated nanocolumns perpendicular to the ZnO wafer surfaces were also observed. These nanocolumns showed diameters of up to 10 nm and lengths of up to 500 nm. The nanocolumns were found in the ZnO wafer even well beyond the projected range of hydrogen ions.


2006 ◽  
Vol 12 (S02) ◽  
pp. 640-641
Author(s):  
DJ Llewellyn ◽  
SM Kluth ◽  
MC Ridgway

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2005


Sign in / Sign up

Export Citation Format

Share Document