Influence of Magnetism on Interaction Energy between 3d Impurities and Hydrogen in Palladium Crystal in the Presence of Vacancies

2009 ◽  
Vol 152-153 ◽  
pp. 19-24
Author(s):  
Leyla E. Isaeva ◽  
D.I. Bazhanov ◽  
S.S. Kulkov ◽  
S.E. Kulkova ◽  
Igor A. Abrikosov

In this paper we have studied from first-principles the effect of magnetism on the hydrogen-metal interaction and the binding properties of palladium with 3d-alloying atoms in the presence of vacancies induced during hydrogenation process. Our first-principles calculations were carried out by means of state of the art ab-initio method based on density functional theory and all-electron PAW-potentials. We have analyzed the changes of the atomic and electronic structures of palladium crystal induced by the presence of substitutional 3d-alloying atoms, interstitial hydrogen and structural defect (palladium vacancy). The obtained results have shown that magnetism can strongly affect the hydrogen-metal interaction in palladium based alloys. We have also demonstrated that the presence of vacancies in the palladium matrix can alter the interaction energy between hydrogen and alloying transition metal atoms.

RSC Advances ◽  
2019 ◽  
Vol 9 (34) ◽  
pp. 19418-19428
Author(s):  
Yusheng Wang ◽  
Xiaoyan Song ◽  
Nahong Song ◽  
Tianjie Zhang ◽  
Xiaohui Yang ◽  
...  

Using density functional theory calculations, the structural, electronic and magnetic properties of a black phosphorene/Tl2S heterostructure (BP/Tl2S) and the BP/Tl2S intercalated with transition metal atoms (TMs) have been detailed investigated.


2017 ◽  
Vol 19 (3) ◽  
pp. 1945-1952 ◽  
Author(s):  
Masahiko Matsubara ◽  
Rolando Saniz ◽  
Bart Partoens ◽  
Dirk Lamoen

We investigate the role of transition metal atoms of group V-b (V, Nb, and Ta) and VI-b (Cr, Mo, and W) as n- or p-type dopants in anatase TiO2 using thermodynamic principles and density functional theory with the HSE06 hybrid functional.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


2021 ◽  
Author(s):  
H. R. Mahida ◽  
Deobrat Singh ◽  
Yogesh Sonvane ◽  
Sanjeev K. Gupta ◽  
P. B. Thakor ◽  
...  

In the present study, we have investigated the structural, electronic, and charge transport properties of pristine, hydrogenated, and oxidized Si2BN monolayers via first-principles calculations based on density functional theory (DFT).


2010 ◽  
Vol 21 (12) ◽  
pp. 1469-1477 ◽  
Author(s):  
M. SAMAH ◽  
B. BOUGHIDEN

Structures, binding energies, magnetic and electronic properties endohedrally doped C 20 fullerenes by metallic atoms ( Fe , Co , Ti and V ) have been obtained by pseudopotential density functional theory. All M @ C 20, except Co @ C 20, are more stable than the undoped C 20 cage. The magnetic moment values are 1 and 2μB. These values and semiconductor behavior give to these compounds interesting feature in several technological applications. Titanium doped C 20 has a same magnetic moment than the isolated Ti atom. Hybridization process in the Co doped C 20 fullerene is most strong than in other doped cages. Electrical and magnetic dipoles calculated in the iron doped C 20 are very strong compared with other clusters.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2339 ◽  
Author(s):  
Xiuwen Zhao ◽  
Bin Qiu ◽  
Guichao Hu ◽  
Weiwei Yue ◽  
Junfeng Ren ◽  
...  

The electronic structure and spin polarization properties of pentagonal structure PdSe2 doped with transition metal atoms are studied through first- principles calculations. The theoretical investigations show that the band gap of the PdSe2 monolayer decreases after introducing Cr, Mn, Fe and Co dopants. The projected densities of states show that p-d orbital couplings between the transition metal atoms and PdSe2 generate new spin nondegenerate states near the Fermi level which make the system spin polarized. The calculated magnetic moments, spin density distributions and charge transfer of the systems suggest that the spin polarization in Cr-doped PdSe2 will be the biggest. Our work shows that the properties of PdSe2 can be modified by doping transition metal atoms, which provides opportunity for the applications of PdSe2 in electronics and spintronics.


2006 ◽  
Vol 84 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G Y Gao ◽  
K L Yao ◽  
Z L Liu

First-principles calculations of the electronic structure are performed for cubic BaTbO3 using the plane-wave pseudopotential method within the framework of density functional theory and using the generalized gradient approximation for the exchange-correlation potential. Our calculations show that cubic BaTbO3 is metallic, and that this metallic character is mainly governed by the Tb 4f electrons and the hybridization between the Tb 5d and O 2p states. From the analysis of the density of states, band structure, and charge density contour, we find that the chemical bonding between Tb and O is covalent while that between Ba and TbO3 is ionic. PACS Nos.: 71.15.Mb, 71.20.-b


2015 ◽  
Vol 17 (45) ◽  
pp. 30598-30605 ◽  
Author(s):  
Ming-Kai Hsiao ◽  
Chia-Hao Su ◽  
Ching-Yang Liu ◽  
Hui-Lung Chen

We employed monolayer tungsten metal to modify the Fe(111) surface, denoted as W@Fe(111), and calculated the adsorption and dehydrogenation behaviors of NH3 on W@Fe(111) surface via first-principles calculations based on density functional theory (DFT).


2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


Sign in / Sign up

Export Citation Format

Share Document