Modified Clipped-LQR Method for Semi-Active Vibration Reduction Systems with Hysteresis

2011 ◽  
Vol 177 ◽  
pp. 10-22 ◽  
Author(s):  
Marek Sibielak ◽  
Waldemar Rączka ◽  
Jarosław Konieczny

Smart materials are being applied more and more widely in semi-active vibration reduction systems. Actuators built with their use are characterized by nonlinearities and hysteretic effects. Their omission in mathematical descriptions may lead to deterioration of the vibration reduction systems. For that reason, it is important to take into account these negative phenomena associated with the actuators at the controller synthesis stage. One method for determining the control laws in semi-active vibration reduction systems that is frequently discussed in academic literature is “Clipped-LQR”. The present paper proposes modification of that method to allow inclusion in the controller synthesis of the hysteretic properties and other nonlinearities of an actuator. The method developed was verified by determining the controller for the semi-active suspension of a machine operator’s seat. A magnetorheological damper was used as an actuator. The dynamic properties of the foam covering of the operator’s seat were included in model. Simulation tests were performed on the vibration reduction system and function of vibration transmissibility was determined. The semi-active vibration reduction system tested was compared to a passive system. The considerations presented herein relate to the semi-active suspension of a machine operator’s seat, and the method presented may be applied to other controlled systems with many degrees of freedom.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 848
Author(s):  
Bogdan Sapiński ◽  
Paweł Orkisz ◽  
Łukasz Jastrzębski

The aim of the work is to investigate power flows in the vibration reduction system equipped with a magnetorheological (MR) damper and energy regeneration. For this purpose, experiments were conducted in the test rig compound of the shaker and the vibration reduction system (electromagnetic harvester, MR damper, spring) which are attached to the sprung mass. The experimental data acquired under sine excitations enabled us to analyze instantaneous power fluxes, as well as a rate of inertial energy changes in the system.


Author(s):  
Zining Wang ◽  
Cong Wang ◽  
Masayoshi Tomizuka

Currently, the semiconductor manufacturing industries over the world are upgrading from processing 300mm wafers to processing 450mm wafers. In order to satisfy the requirements of producing and processing 450mm wafers, vibration control of wafer handling tools has to make new breakthroughs. This paper introduces an active wide-band vibration rejection method with a vibrotactile actuator and applies it to a wafer transfer robot. Compared to conventional methods based on motor control of the robot, active vibration cancellation with a separate actuator does not risk compromising the tracking accuracy of wafer transfer motions. A three-step controller synthesis scheme is developed by analyzing and combining the strengths of several control strategies. Experimental validation shows a vibration reduction of more than 40% in energy and 30% in amplitude.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Andrzej Dymarek ◽  
Tomasz Dzitkowski

The paper presents the problem of discrete vibration reduction in mechanical systems depending on the desired dynamic properties. The conditions for physical feasibility of dynamic characteristics have been defined, in the form of impedance and mobility, for passive and active vibration reduction. The authors have presented a graphic method for determining the free vibration drop coefficient, based on the desired value of the reduced resonance frequency amplitude.


2020 ◽  
Vol 26 (17-18) ◽  
pp. 1471-1483
Author(s):  
Andrzej Dymarek ◽  
Tomasz Dzitkowski ◽  
Krzysztof Herbuś ◽  
Piotr Ociepka ◽  
Agnieszka Sękala

The article presents a method of active vibration reduction of vibrating mechanical systems. This method is based on the properties of positive rational functions, which in the case of discrete dynamical systems correspond to the characteristic function describing such systems. The method formalized uses methods for decomposing positive rational functions. The advantage of this approach is taking into account the analytical form of a characteristic function of the system being tested and the vibration-reducing force, as well as the conditions that the system should meet in the event of an active vibration-reducing force. In addition, in the proposed method, the desired dynamic properties of the system and the vibration-reducing force can be defined in such a way that the determined parameters of the active force affect all forms of the natural vibrations of the examined system. Based on the formalized methodology, the force reducing the vibrations of a four-storey frame to the desired displacement amplitude was determined. The impact of the place of application of the specific active force on the reduction of vibration of the tested object was also taken into account. The vibrations of the tested structure’s model were caused by kinematic excitation with a harmonic course and an amplitude corresponding to an earthquake of a magnitude of 5 on the Richter scale. To verify the determined force reducing the vibrations of the object and to create a visualisation of the analysed phenomenon, a dynamic analysis of the building structure was carried out using PLM Siemens NX 12 software.


2007 ◽  
Vol 45 (9) ◽  
pp. 835-847 ◽  
Author(s):  
Gerhard Schandl ◽  
Peter Lugner ◽  
Christian Benatzky ◽  
Martin Kozek ◽  
Anton Stribersky

Author(s):  
Sundareswara Balakrishna ◽  
Heather Houlden ◽  
David Butler ◽  
Richard White

2015 ◽  
Vol 27 (1) ◽  
pp. 31-42
Author(s):  
Jarosław Spychała ◽  
Mariusz Żokowski ◽  
Paweł Majewski

Abstract The article presents considerations concerning the construction of vibration reduction system using magnetic suspension technology. Presents the results of simulation, numerical and experimental the bearingless electric motor, for which successfully used this type of solution. Positive results of research and testing have become the basis for the development of the concept of building this type of active vibration reduction system , at the same time acting as a support for a technical object, which is a jet engine. Bearing failures are manifested by loss or distortion of their mass, which leads to a total destruction of the roller bearing, and thus reflected in the security. The article presents the concept of building active magnetic suspension to eliminate the bearing system of classical rolling bearing and replace it with magnetic bearing.


Sign in / Sign up

Export Citation Format

Share Document