Effects of Chamber Pressure on the Performance of CO2 Beam Cleaning

2014 ◽  
Vol 219 ◽  
pp. 131-133
Author(s):  
Seung Ho Kim ◽  
Joong Ha Lee ◽  
Ho Young Kim

As the size of functional patterns in the semiconductor chips shrinks down to below 100 nm, removing nanoscale contaminant particles is an important technological challenge that the current semiconductor manufacturing industry must overcome. Several cleaning methods proposed to date, such as megasonic cleaning [1], droplet impact [2], and cryogenic aerosol cleaning [3], have difficulties in cleaning of sub-100 nm contaminant particles, let alone their tendency to induce pattern damages. Kim et al. [4] has recently developed a new method, where CO2 solid particles nucleated from a supersonic nozzle physically attack contaminant nanoscale particles on the wafer, thus detaching them. A drawback of this novel scheme is that the cleaning must be executed in vacuum because CO2 gas needs to sublimate into solid and be accelerated supersonically as exiting the nozzle. This has adverse effects on the cost and rate of the semiconductor manufacturing process. Here we investigate the effects of vacuum chamber pressure on the performance of the CO2 dry cleaning system. We observe the cryogenic CO2 beams, dents induced by CO2 solid particles, and wafer surfaces initially contaminated with cerium oxide particles, which indicate the effects of the chamber pressure.

2005 ◽  
Vol 103-104 ◽  
pp. 141-146 ◽  
Author(s):  
Guy Vereecke ◽  
Frank Holsteyns ◽  
Sophia Arnauts ◽  
S. Beckx ◽  
P. Jaenen ◽  
...  

Cleaning of nanoparticles (< 50nm ) is becoming a major challenge in semiconductor manufacturing and the future use of traditional methods, such as megasonic cleaning, is questioned. In this paper the capability of megasonic cleaning to remove nanoparticles without inflicting damage to fragile structures is investigated. The role of dissolved gas in cleaning efficiency indicates that cavitation is the main cleaning mechanism. Consequently gas mass-balance analyses are needed to optimize the performance of cleaning tools. When gas is dissolved in the cleaning present tools can remove nanoparticles down to about 30 nm using dilute chemistries at low temperature. Ultimate performance is limited by cleaning uniformity, which depends on tool design and operation. However no tool reached the target of high particle removal efficiency andlow damage. Significantly lower damage could only be obtained by decreasing the power, at the cost of a lower cleaning efficiency for nanoparticles. The development of damage-free megasonic is discussed.


2021 ◽  
Vol 314 ◽  
pp. 222-227
Author(s):  
Yukifumi Yoshida ◽  
Katsuya Akiyama ◽  
Song Zhang ◽  
Dai Ueda ◽  
Masaki Inaba ◽  
...  

Wet cleaning has become challenging as the feature size of semiconductor devices decreased to sub-5 nm nodes. One of the key challenges is removing various types and sizes of particles and contamination from complex and fragile 3D structures without pattern damage and film loss. Conventional physical cleaning methods, such as dual-fluid spray or megasonic cleaning, are being used for the particle removal process. However, in advanced device nodes, these methods induce pattern damage and film loss. In this paper, we describe a novel particle removal technology called Nanolift which uses a polymer film consisting of two organic resins with different functions and achieved high particle removal efficiency on various types and sizes of particles with no pattern damage and minimum film loss.


2016 ◽  
Vol 1 (2) ◽  
pp. 183-190
Author(s):  
Dwi Urip Wardoyo

This study aims to determine the determination of the cost of production for products produced by PT. DWA. The Company is engaged in the manufacturing industry specialized in automotive components. Its activity is carried out through a series of production processes, so that expenses spent in the production will be calculated into the cost of the production sold. The population in this study were all manufacturing companies in Jakarta. Convenience sampling method selected one of the companies that get the confidence to assemble three national car project in Indonesia, namely Timor, Bakrie and Maleo. Test analysis used in this study is to test the calculation of full costing with job order costing. This study shows that (a) determination of the cost elements associated with the cost of production and (b) determining the cost of production on a product-based job costing with full costing approach. Keywords: cost of production, full costing


2018 ◽  
Vol 10 (11) ◽  
pp. 3937 ◽  
Author(s):  
Sahar Bouaddi ◽  
Aránzazu Fernández-García ◽  
Chris Sansom ◽  
Jon Sarasua ◽  
Fabian Wolfertstetter ◽  
...  

The severe soiling of reflectors deployed in arid and semi arid locations decreases their reflectance and drives down the yield of the concentrating solar power (CSP) plants. To alleviate this issue, various sets of methods are available. The operation and maintenance (O&M) staff should opt for sustainable cleaning methods that are safe and environmentally friendly. To restore high reflectance, the cleaning vehicles of CSP plants must adapt to the constraints of each technology and to the layout of reflectors in the solar field. Water based methods are currently the most commonly used in CSP plants but they are not sustainable due to water scarcity and high soiling rates. The recovery and reuse of washing water can compensate for these methods and make them a more reasonable option for mediterranean and desert environments. Dry methods, on the other hand, are gaining more attraction as they are more suitable for desert regions. Some of these methods rely on ultrasonic wave or vibration for detaching the dust bonding from the reflectors surface, while other methods, known as preventive methods, focus on reducing the soiling by modifying the reflectors surface and incorporating self cleaning features using special coatings. Since the CSP plants operators aim to achieve the highest profit by minimizing the cost of cleaning while maintaining a high reflectance, optimizing the cleaning parameters and strategies is of great interest. This work presents the conventional water-based methods that are currently used in CSP plants in addition to sustainable alternative methods for dust removal and soiling prevention. Also, the cleaning effectiveness, the environmental impacts and the economic aspects of each technology are discussed.


2018 ◽  
Vol 25 (7) ◽  
pp. 1992-2017 ◽  
Author(s):  
Kaustov Chakraborty ◽  
Sandeep Mondal ◽  
Kampan Mukherjee

Purpose Approximately, 800m tons of e-waste is generated per year in India. Reverse supply chain (RSC) is the probable strategy to cope up with the issue. Setting up a RSC process is not popular in the Indian sector. There are several factors that basically control the profitability of such kind of business. Hence, the purpose of this paper is to develop a causal model among the identified issues and sub-issues for setting up a RSC in an Indian semiconductor manufacturing industry and then evaluate the critical issues based on the causal relations. Design/methodology/approach Decision-making trial and evaluation laboratory (DEMATEL) method along fuzzy set theory is used to develop the causal framework among the identified strategical and tactical issues. According to the causal relations from DEMATEL, analytical network process is then used to identify the weights of the sub-issues. Findings The cause–effect interactions among the main issues show that legislations and regulations, market-related issues and organizational issue are the most significant strategic issues. Uncertainty in the acquisition time is the most significant tactical issue because it has a crucial impact on the quality and quantity of the used products. Based on the obtained causal relations of the main issues, it is identified that the reduction of waste, creation of new opportunity, market competition, cost reduction, change in technology and location, capacity and number of recovery facility are the major sub-issues in RSC implementation. Practical implications This study is conducted on the basis of the experts’ opinion from a semiconductor manufacturing industry, situated in the southern part of India. Therefore, this proves its practical implications. Originality/value The paper provides the detail illustration of the issues in the RSC process, and the prioritization of the issues based on the cause–effect relationships also provides some meaningful managerial insights.


Author(s):  
Fitsum Etefa Ahmed ◽  
Rotick K. Gideon

Cutting is the process in which goods or garment material are cut and converted into pattern shapes of the goods or garment components. There are two methods of Leather cutting, which are hand cutting and machine cutting. Hand cutting is done with the use of hand knife, cutting board and cutting patterns. Machine cutting can be done using semi-automatic cutting machines or fully-automatic cutting machines. Currently, in Ethiopia, different local and foreign investors are participating in leather products manufacturing. Most of the leather product manufacturing industry and some Small and Medium enterprise’s (SME’s) in the country are using leather cutting machines in order to cut leather goods or garment parts. Most of the industry and SMEs are using imported cutting board made of plastics and rubbers. However, these cutting boards are expensive.   This research aimed at developing a cutting board made from HDPE (High-Density Polyethylene) plastic waste as main material, calcium carbonate as a filler and glass fiber as a reinforcing material. Primary and secondary data gathering techniques were applied simultaneously. Primary data were collected through interview and field observation. Secondary data was gathered by reviewing different literature. The cutting board developed through collecting HDPE plastic waste, washing, shredding and melting the shredded plastic with filler and reinforcing material. The melted plastic poured in to cutting board mold and cooled. The developed cutting board was compared with HDPE cutting board available in the local market. The developed board showed relative compression and hardness properties with the HDPE cutting board available in the market. In the cost analysis, the developed cutting board is cheaper than the cutting board which available in the market. However, the cutting board in the market has better surface texture and quality than the developed cutting board. Melting HDPE plastic waste using metal or clay cooking pots and charcoal fire is a tedious task and smoke from the fire will cause human health problem and will affect environment. Consequently, manual plastic melting method is not feasible for mass production, because it is difficult to control the amount of heat (charcoal fire) during melting process. Based on this the authors recommend using machine based plastic melting and molding during HDPE and related plastic recycling.


Sign in / Sign up

Export Citation Format

Share Document