The Study of Heat Transfer Coefficient during Cooling Plates of High Strength

2015 ◽  
Vol 220-221 ◽  
pp. 760-764
Author(s):  
Marcin Janik ◽  
Tomasz Garstka ◽  
Aneta Krzyżańska ◽  
Marcin Knapiński ◽  
Anna Kawałek

Nowadays methods of hot-rolled sheets should ensure high mechanical and plastic properties of sheets, in-line rolling. Such technologies require application of devices for accelerated cooling of a band after last deformation. The essential thing in this process is selection of an appropriate positioning of the cooling intensity. The paper presents results of the cooling intensity for the selected air-water nozzle. On the basis of the results, the map of distribution of heat transfer coefficient for the nozzle to the surface of the cooling was performed. These tests were carried out for different settings of water and air. The research was carried out for high-strength steel. The obtained results allow executing of computer simulation of the impact of cooling intensity on the final product’s structure.

2012 ◽  
Vol 509 ◽  
pp. 119-122
Author(s):  
Wei Zhou ◽  
Ling Huan Lu ◽  
Zhen Li

The impact of recycled fine aggregate and powder on the mechanics and thermal performance of recycled concrete hollow blocks was discussed in this paper. The results showed that 30% recycled fine aggregate and powder have slight affect on the strength of recycled concrete hollow blocks. But the strength reduced significantly when the replacement is above 50%. The impact of recycled fine aggregate and powder on the performance of concrete hollow blocks with high strength grade is notable . The heat transfer coefficient of recycled concrete hollow blocks with 30% recycled fine aggregate and powder was equivalently to ordinary concrete hollow blocks.


Author(s):  
AS Sabu ◽  
Joby Mackolil ◽  
B Mahanthesh ◽  
Alphonsa Mathew

The study focuses on the aggregation kinematics in the quadratic convective magneto-hydrodynamics of ethylene glycol-titania ([Formula: see text]) nanofluid flowing through an inclined flat plate. The modified Krieger-Dougherty and Maxwell-Bruggeman models are used for the effective viscosity and thermal conductivity to account for the aggregation aspect. The effects of an exponential space-dependent heat source and thermal radiation are incorporated. The impact of pertinent parameters on the heat transfer coefficient is explored by using the Response Surface Methodology and Sensitivity Analysis. The effects of several parameters on the skin friction and heat transfer coefficient at the plate are displayed via surface graphs. The velocity and thermal profiles are compared for two physical scenarios: flow over a vertical plate and flow over an inclined plate. The nonlinear problem is solved using the Runge–Kutta-based shooting technique. It was found that the velocity profile significantly decreased as the inclination of the plate increased on the other hand the temperature profile improved. The heat transfer coefficient decreased due to the increase in the Hartmann number. The exponential heat source has a decreasing effect on the heat flux and the angle of inclination is more sensitive to the heat transfer coefficient than other variables. Further, when radiation is incremented, the sensitivity of the heat flux toward the inclination angle augments at the rate 0.5094% and the sensitivity toward the exponential heat source augments at the rate 0.0925%. In addition, 41.1388% decrement in wall shear stress is observed when the plate inclination is incremented from [Formula: see text] to [Formula: see text].


2010 ◽  
Vol 438 ◽  
pp. 81-88 ◽  
Author(s):  
Michael Wieland ◽  
Marion Merklein

One characteristic of hot stamping of ultra high strength steels is the high wear rate of the used tools which leads to shorter tool life. Coatings improving wear resistance can increase the lifetime of the used tools but process relevant data such as the heat transfer capability of coated tool steels are missing. Within this paper the heat transfer capabilities of coated tool steels for the hot stamping processes are determined. Therefore different coating systems based on AlCrN are applied on the tool steels and the pressure dependent heat transfer coefficient is determined using process relevant conditions. As semi-finished blank the hot stamping steel 22MnB5 with an aluminum-silicon pre-coating is used. With respect to a finite element analysis of the forming operation of the hot stamping process the heat transfer coefficient represents an important input data for the process layout.


Author(s):  
Etienne Caron ◽  
Kyle J. Daun ◽  
Mary A. Wells

Distributed mechanical properties can be obtained in ultra high strength steel parts formed via hot forming die quenching (HFDQ) by controlling the cooling rate and microstructure evolution during the quenching step. HFDQ experiments with variable cooling rates were conducted by quenching Usibor® 1500P boron steel blanks between dies pre-heated up to 600°C. The heat transfer coefficient (HTC) at the blank / die interface, which is used to determine the blank cooling rate, was evaluated via inverse heat conduction analysis. The HTC was found to increase with die temperature and stamping pressure. This heat transfer coefficient increase was attributed to macroscopic flattening of the boron steel blank as well as microscopic deformation of surface roughness peaks. At the end of the hot stamping process, the HTC reached a pressure-dependent steady-state value between 4320 and 7860 W/m2·K when the blank and die temperatures equalize.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hadi Mahdizadeh ◽  
Nor Mariah Adam

Purpose This paper aims to investigate increasing heat transfer in bend tube 90° by fluid injection using nano fluid flow that was performed by expending varying Reynolds number. This paper studies the increased heat transfer in the bent tube that used some parameters to examine the effects of volume fraction, nanoparticle diameter, fluid injection, Reynolds number on heat transfer and flow in a bend pipe. Design/methodology/approach Designing curved tubes increases the thermal conductivity amount between fluid and wall. It is used the finite volume method and simple algorithms to solve the conservation equations of mass, momentum and energy. The results showed that the nanoparticles used in bent tube transfusion increase the heat transfer performance by increasing the volume fraction; it has a direct impact on enhancing the heat transfer coefficient. Findings Heat transfer coefficient enhanced 1.5% when volume fraction increased from 2 % to 6%, the. It is due to the impact of nanoparticles on the thermal conductivity of the fluid. The fluid is injected into the boundary layer flow due to jamming that enhances heat transfer. Curved lines used create a centrifugal force due to the bending and lack of development that increase the heat transfer. Originality/value This study has investigated the effect of injection of water into a 90° bend before and after the bend. Specific objectives are to analyze effect of injection on heat transfer of bend tube and pressure drop, evaluate best performance of mixing injection and bend in different positions and analyze effect of nano fluid volume fraction on injection.


Sign in / Sign up

Export Citation Format

Share Document